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Abstract

In the past few decades, the amount of available data has been growing exponentially
- a fact which is symbolized by the appearance of the "Big Data" industry [1].
Devices ranging from biosensors to smartphones turn almost every aspect of our
lives into digital information, which is now continuosly shared over internet and
easily stored. Moreover, processing power continues to follow the famous "Moore's
law", reliably doubling every ∼ 2 years 1. This combination of vast amounts of
data with computing power makes the study of algorithms which can e�ectively and
reliably extract information from data as relevant as ever.

To answer the question of how to learn from data is precisely the goal of Machine
Learning and, speci�cally, a class of algorithms known as Supervised Learning [2]. In
the parallel world of Signal Processing, the connection between signals in continuous
and discrete domain has been well studied [3]. The Nyquist-Shannon sampling
theorem is an example of this, which establishes that all the information of a limited
bandwidth signal can be captured with enough samples. More recently, the �eld of
compressed sensing has been analysing under-determined systems, with the goal of
acquiring and reconstructing signals when very few samples are available (below the
Nyquist-Shannon theorem requirements). These algorithms exploit the sparsity of
the signal in some domain to provide higher-quality results [4]. Because sparsity
introduces simpler and more interpretable solutions, it is a desirable feature for
models [5].

This two-part thesis develops higher-order (f : RN 7→ R, N > 1) regulariza-
tion methods for supervised learning, while exploring model sparsity and the use of
splines in merging the continuous and discrete worlds [6].

In the �rst part (deep splines), based on the work of Unser et al.[7], Gupta et
al.[8] and Debarre et al.[9], we learn the 1D activation functions σ : R 7→ R of a
neural network, together with the rest of the parameters. The deep spline module
will be evaluated in an area classi�cation problem and a model sparsi�cation method
will be introduced.

In the second part, we develop a novel 2D learning framework (f : R2 7→ R),
using a Hessian-Schatten regularization term. Unlike in Lefkimmiatis et al.[10], the
problem will be treated in its continuous formulation and the advantages of learning
over function spaces will be discussed. Finally, this framework will be applied to the
tasks of reconstruction, data �tting and "2D super-resolution".

1https://pages.experts-exchange.com/processing-power-compared
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Chapter 1

Introduction

This chapter introduces important concepts used throughout the thesis. We begin
with an overview of supervised learning, in the �rst section; in the second section, we
examine classical methods to solve parameterized learning problems; in the following
two sections, we introduce the topic of learning over function spaces, where we
discuss learning over reproducing kernel Hilbert Spaces (RKHS) and generalized
Total Variation regularization (gTV), which is closely linked to the content of this
thesis; �nally, we focus on the more recent �eld of Deep Learning, which again tackles
problems with a parametric formulation, and review the theory on deep splines, a
method to learn the activations of a neural network in which the �rst part of the
project is based.

1.1 Supervised Learning

In mathematical terms, we can describe the setup of supervised learning as follows.
We have a dataset consisting of a set SX of inputs and a corresponding set SY
of labels/observations. Each pair in the dataset is assumed to be independently
sampled from an underlying distribution D with range X × Y [11]:

data : SX = {x1, ...,xM}
observations : SY = {y1, ...,yM}

S = {(xm,ym) i.i.d. ∼ D}Mm=1. (1.1)

As an example, the dataset might consist of several images of cats and dogs, together
with their corresponding binary labels - 0 when the image represents a cat and 1
when it represents a dog - and the goal of the supervised learning algorithm (denoted
A) is to learn to distinguish between images of these two types. This is known as a
classi�cation problem since the range of the output consists of a �nite set of discrete
values. Each image in the set SX is sampled according to some distribution of natural
images of cats and dogs (i.e., Xm ∼ pX , m = 1, . . . ,M) and the corresponding label
is determined from the image sample:

P(Ym = 0 | Xm = xm) =

{
1, if xm is an image of a cat.

0, if xm is an image of a dog.

P(Ym = 1 | Xm = xm) = 1−P(Ym = 0 | Xm = xm)

1



Figure 1.1: Example of data �tting;
blue line is the underlying function f ;
red crosses are the noisy observations. 1

Our objective is to construct a model (denoted fS) which can classify correctly, as
often as possible, images sampled from the distribution pX .

In another example, a function f : RM 7→ R is applied to each input x, producing
a corresponding real-valued output y, but whose observations are noisy due to noise
present in the measurement system:

ym = f(xm) + εm, m = 1, ...,M. (1.2)

where ε is the noise. We can assume the noise is independent and uniformly dis-
tributed (i.i.d.) and follows a gaussian distribution. Then, the random variable
Ym | Xm follows a normal distribution with mean f(xm) and standard deviation σ:

fYm|Xm(ym | xm) =
1√
2πσ

e−(ym−f(xm))2/2σ2

(1.3)

In this case, we would like to have a model fS which is close to the underlying f ,
in some sense (e.g., minimize their L2 di�erence). Figure 1.1 shows this data �tting
task for the 1D case f : R 7→ R. This is known as a regression problem since the
output can assume values in a continous domain.

In more general terms, ideally, we would like to �nd a family of functions FT for
which the expected loss over the true distribution is su�ciently low:

LD(f) = E(x,y)∼D[`(y, f(x))] (1.4)

FT,ε = {f : LD(f) < ε} (1.5)

where `, the loss function, quanti�es how good the function f is for the task. We
call FT,ε the target family for requirement ε. Notice that, if the requirement ε is very
strict, the target family might be an empty set. For example, in problem (1.2), the
expected loss is lower bounded by the variance of the noise σ2, which we could achieve
only if we model perfectly the underlying function f (i.e., FT,ε = ∅, for ε < σ2).

Note, however, that our model is the result of some algorithm A and is con-
strained by its architecture and parameters. Hence, it is likely that our model

1https://i.stack.imgur.com/0e8Fp.png
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family (denoted FS) does not contain some of the functions in the target family
FT,ε (or any, depending on the ε constraint), i.e., f ∈ FT,ε may be not realizable.
In addition, we cannot minimize the true loss (1.4) in practice, since we do not
know the underlying distribution D of the data. Instead, we only have access to a
sampled dataset S on which we can minimize the so-called empirical (training) loss,
and which we hope is a good enough approximation of the the true loss (1.4):

LS(fS) =
1

|S|
∑

(xm,ym)∈S

`(ym, fS(xm)) (1.6)

To emphasize that our model fS ∈ FS has parameters θ and is a result of a su-
pervised learning algorithm A, which learns on the sampled training dataset S, we
write:

fS,θ = A(S) (1.7)

1.1.1 Regularization

Minimizing the empirical loss (1.6) instead of the true loss (1.4) comes with its
downsides. First, due to the stochastic nature of sampling a dataset, even if the
empirical (training) loss LS(fS) is small enough, when the learned model fS is
applied to another freshly sampled dataset Stest from the same distribution D, the
test loss LStest(fS) might be much higher. Second, apart from the generalization
problems inherent to training on a sampled dataset, making the minimization of the
empirical loss our sole objective is counter-productive when the samples are noisy,
since our goal is to model the underlying target function and not to �t the noise
present in the observations.

The problem described in both of these points is called over�tting, named as such
because it depicts the unfortunate situation of over-�tting to the training set and
not modeling the underlying function. It is ilustrated in �gure 1.2. The solution for
this is to have models which can su�ciently minimize the empirical loss, but which
are kept simple enough so as to not over�t the training data and to generalize well to
other datasets. This can be done with regularization, which constrains the capacity
of the family of model functions; one example is ridge regularization, where a term
λ ‖θ‖2, which penalizes large parameters, is added to the minimization objective
(1.6) (lambda is the regularization weight).

Lastly, there might be several models which give low empirical losses (we say
that we have an under-determined system). Therefore, in line with the framework
of compressed sensing, we might use regularization to incorporate prior knowledge
that we have on the target functions to restrict the model search space. For example,
if we know that we are trying to model natural images, our model can re�ect their
smoothness by penalizing large variations of the function. Likewise, if we are mea-
suring the noisy sound signal of a tuning fork, we know that the underlying signal is
sinusoial. Since the Fourier transform of a sinusoid consists of only two diracs whose
location depends on its frequency, i.e., F{cos(2πf0t)} = 1

2
(δ(f − f0) − δ(f + f0)),

we expect sparsity in fourier domain.
In this thesis, sparsity-promoting regularization plays a central role. It relates

to the more general paradigm in signal processing of using as less parameters as

2https://commons.wikimedia.org/wiki/File:Overfitting.svg
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Figure 1.2: Example of over�tting;
black line is the underlying function f ;
green line is the over�tted model. 2

possible to explain the data, so as to have simpler and more interpretable solutions
[5].

The next points summarize the usefulness of regularization:

• Reducing over�tting - regularization constrains the model so that it is less
likely to �t the noise inherent to sampling or explicitly present in the observa-
tions and more likely to model underlying distribution.

• Solving under-determined systems - when several functions would satisfy the
approximation constraints, regularization reduces the search space by enforc-
ing prior knowledge when we have information about the underlying target
function f .

1.2 Classical Methods

In this section, we introduce classical supervised learning methods; the �rst sub-
section shows how regularization can deal with under-determined or ill-conditioned
systems and introduces the family of gradient-based optimization methods; the sec-
ond subsection shows how regularization can be used to exploit model sparsity. To
simplify notation, from now on, we drop the S in fS when referring to the model
function.

1.2.1 Linear Ridge Regression

Linear Ridge regression consists of a linear regression problem with an `2 regular-
ization on the parameters. It is mathematically expressed as:

min
w

1

2M

M∑
m=1

(f(xm)− ym)2 + λ ‖w‖2
2 (1.8)

4



where xm ∈ RD, f : RD 7→ R, and f(xm) = xTmw, i.e., the search space is restricted
to functions which are a linear combination of the input xm with learnable weights
(parameters) w. The �rst term is the data �delity term (how well can the model
explain the data) and the second one is the regularization term. The previous
equation can be written in matrix form as:

min
w

1

2M
‖Xw − y‖2

2 + λ ‖w‖2
2 (1.9)

where X ∈ RM×D is the matrix whose row i is the vector xi. It is easy to see that
the expression above is convex in w, so it has a single global minimizer and we can
�nd it explicitly by equating the gradient wrt to the parameters w to zero:

∇L(w∗) = − 1

M
XT (y −Xw∗) + 2λw∗ = 0⇔ (1.10)

⇔ w∗ = (XTX+ λ′I)−1XTy (1.11)

where λ′

2M
= λ.

With (1.11), we can analyse the e�ect of the regularization on the result. First,
note that the eigenvalues of XTX+ λ′I are at least λ′ (> 0). So, the regularization
essentially "lifts" the eigenvalues of the system, making XTX+λ′I always invertible,
which leads to a unique w∗ solution (since a matrix is invertible i� none of its
eigenvalues is zero). On the other hand, even if the matrix is invertible, it can be
ill-conditioned if some of its columns are nearly collinear. This situation can lead
to numerical issues when inverting the matrix and is quanti�ed by the condition
number, which for a symmetric matrix A (like in our case) is equal to:

κ(A) =
|λmax|
|λmin|

≥ |λmax|+ λ′

|λmin|+ λ′
(1.12)

We can verify that, by "lifting" the eigenvalues, regularization can reduce the con-
dition number, thus improving numerically stability.

Notice that the complexity of (1.11) is O(D2M) and the computations are not
easily paralellized. Because of this, a class of faster methods which do not involve
matrix inversions and are based on the gradient (1.10) (gradient-based methods)
have gained more traction in supervised learning.

The full gradient descent algorithm takes a step in the opposite direction of the
gradient to minimize the loss:

w(t+1) = w(t) − γ∇L(w(t)) (1.13)

where γ is the step size. This is essentially a local approach to a global problem: if
the function to optimize is convex, using an appropriate step size, we are guaranteed
to reach the optimal solution; if not, we can still reach a local minima which is close
to the optimal one, but there are no guarantees. In practice, the full gradient descent
algorithm takes a lot of time to compute and leads to a small number of updates in
a certain time frame. For this reason, batch gradient descent (BGD) updates the
weights after the gradient of the loss is calculated for a batch of b samples (e.g.,
100). The gradient for a batch Bi is the average of the gradients of its bi = |Bi|
randomized samples taken from the training set:

∇LBi
(w(t)) =

1

|Bi|
∑
n∈Bi

∇Ln(w(t)) (1.14)

5



An important point is that the batch gradient is an unbiased estimator of the full
gradient, i.e., E[∇LB(w(t)] = ∇L(w(t)). Nowadays, batch gradient descent is the
core of deep learning methods, since the computation of the gradients for each batch
can be paralellized easily in a GPU.

1.2.2 Linear LASSO Regression

Linear LASSO regression is a linear regression problem where the `2 norm regular-
ization in (1.8) is replaced by an `1 norm regularization [12]:

min
w

1

2M

M∑
m=1

(f(xm)− ym)2 + λ ‖w‖1 (1.15)

This is very well studied problem in signal processing, especially in the �eld of com-
pressed sensing. Since the `1 regularization is known to promote sparse solutions
[12][13], it can be used to reduce the search space and solve under-determined sys-
tems. For example, in magnetic ressonance imaging (MRI), acquisitions are known
to be sparse in a given transform domain [14], so this knowledge can be incroporated
in the loss function with an `1 regularization.

1.2.3 Classi�cation Algorithms

Unlike in regression problems, in classi�cation tasks the output assumes values in
a �nite set. Each possible value y ∈ {0, 1, 2, . . . , K − 1} represents a class. In
the cats/dogs example, K = 2, and the label 0 is used for cats and 1 for dogs
(binary classi�cation). We are going to present a high-level overview of two classical
classi�cation algorithms: Logistic regression and Support-vector machines.

Logistic Regression

Logistic regression is based on the logistic/softmax function (�gure 1.3a):

σ(z) :=
ez

1 + ez

which is used to transform (−∞,∞) predictions from a linear model xTw + w0

into a probability. Since it predicts a real probability value, this method contains
"regression" in its name, despite being used for classi�cation. We refer to the simpler
case of binary classi�cation (e.g., cats/dogs), although it can be extended to multi-
class learning:

p(1 | x,w) = σ(xTw + w0) (1.16)

p(0 | x,w) = 1− σ(xTw + w0)

The goal is to choose the parameters w which explain the data (1.1), i.e., maximize
the likelihood p(y | X,w) =

∏M
m=1 p(ym | xm) (assuming i.i.d. samples). Instead,

6



(a) Logistic loss. (b) Hinge loss.

Figure 1.3: Classi�cation losses.

we can minimize the additive inverse of the log-likelihood, transforming it into a loss
function. Deriving the formulas (see [2]), we get:

L(w) =
M∑
m=1

ln(1 + ex
T
mw)− ymxTmw (1.17)

This cost function can be proven to be convex and so it can be optimized using the
batch gradient descent method described in the previous section. An `2 regulariza-
tion with weight λ

2
is often also added to the the loss function [11].

After training the model, for a new sampled dataset (test set), we can simply
apply it and predict the label 1 if σ(xTw + w0) > 0.5 and 0 otherwise.

Support-Vector Machines

Consider again the case of binary classi�cation but where now the two classes are
represented by −1 and 1. SVM optimizes the following loss, containing an `2 regu-
larization term:

min
w

M∑
m=1

[1− ymxTmw]+ +
λ

2
‖w‖2

2 (1.18)

The �rst term is called the Hinge loss, [z]+ := max{0, z} (�gure 1.3b). The essential
characteristic of this loss function is that it does not penalize datapoints which are
already "well" classi�ed: if the label is ym = 1 and the prediction xTmw ≥ 1 then
the data point xm does not contribute to the loss; and similarly if ym = −1 and
xTmw ≤ −1. The vectors xm for which this happens are called non-support vectors
(hence the name of the method). The loss (1.18) can be again optimized with a
gradient descent algorithm. However, duality theory is often used to derive the
following dual problem formulation:

max
α∈[0,1]N

αT1− 1

2λ
αTQα, (1.19)

where Q := diag(y)XXTdiag(y), and w relates to α through the relation w(α) =
1
λ
XTdiag(y)α. This problem can be solved by coordinate ascent on α and has some

advantages: the dual is kernelized,

K = XXT (1.20)

7



so we can use the kernel trick by specifying K directly without the need to specify X
that originated it; and the solution α is only non-zero in positions corresponding to
vectors which are essential in determining the decision boundary (essential support
vectors).

1.3 Learning Over Function Spaces

In contrast to the classical methods we have seen so far, which solve minimization
problems formulated in terms of the parameters w of the model f , another class
of methods exists which tackle problems expressed directly in terms of f and not
its parameters (learning over function spaces). This shift in perspective will be
important in the rest of the thesis.

In this section, we brie�y address the role of reproducing kernel Hilbert Spaces
(RKHS) in Machine Learning [15], and then discuss generalized Total Variation
regularization (gTV), which promotes sparsity in continuous domain. In particu-
lar, we will examine an algorithm based on B-splines which exactly discretizes the
continuous problem formulation.

1.3.1 Learning Over Reproducing Kernel Hilbert Spaces

Suppose H is a Hilbert space on a set X. H is a reproducing kernel Hilbert space
if, for each x ∈ X, there exists a unique function kx ∈ H such that [16]:

1. k has the reproducing property, f(x) = 〈f, kx〉, ∀f ∈ H.

2. k spans H, H = span{kx(·) : x ∈ X}.

From this, we can de�ne the reproducing kernel of H, k : X ×X 7→ R, as:

k(x, y) = 〈kx, ky〉 . (1.21)

Scholkopf et al. proved a general version of the following Representer Theorem,
which created a more uni�ed framework for learning.

Suppose we have a kernel k : X×X 7→ R, and which has a corresponding RKHS
Hk. Consider a problem of the form:

arg min
f∈Hk

M∑
m=1

(f(xm)− ym)2 + λg(‖f‖) (1.22)

where ‖·‖ is the Hilbert space norm and g is a strictly monotonically increasing
function, e.g., g(‖f‖) = λ ‖f‖2. Then, the minimizer f ∗ is of the form:

f ∗(x) =
M∑
i=1

αik(x,xi) (1.23)

where αi ∈ R. Note how the problem is formulated in terms of f and not its
parameters. Several algorithms can be seen in the light of this theorem. For example,
in SVM (1.20), we have a kernel of the form k(xi,xj) = xTi xj.

In the next section, we introduce a more speci�c problem which will be solved by
spanning the space of model functions with a B-spline basis dictionary, motivated
by a corresponding Representer Theorem.
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Figure 1.4: Canonical Green's function for the D2 operator (ReLU). (source: [22])

1.3.2 Generalized Total Variation

The problem introduced in this section deals with important concepts which will be
used in the rest of the thesis; it is of the following form:

argmin
f

M∑
m=1

(f(xm)− ym)2 + λ ‖L{f}‖M (1.24)

where f : R 7→ R, L is a continuous linear shift-invariant (LSI) operator and theM
norm is associated with M(R), the space of Radon measures (1.26). Notice here
that the regularization is applied to the function itself, like in the RKHS case.

Regularization

Let us now explain the meaning of this regularization term. L is a spline-admissible
operator, which is de�ned as an LSI operator which satis�es the following properties:

1. There is a locally integrable function of slow growth ρL : R 7→ R s.t. L{ρL} = δ
(L admits a Green's function).

2. Its null space NL has �nite dimension.

We will only focus on linear di�erential operators L (which admit a Green's function
and have a �nite null-space). One important example is L = D2, in which case the
notation TV(2) (total variation-2) is used for the regularization term; the nullspace
of this operator consists of all linear functions, i.e., ND2 = span{1, x}, and its
corresponding Green's functions (non-unique) can be written as:

ρD2 = a[x]+ + u, u ∈ ND2 . (1.25)

The �rst term a[x]+ is a ReLU function with slope a; the fact that there are sev-
eral Green's functions for D2 and that they di�er by a linear term arises from the
nullspace ND2 . We call ρD2 = [x]+ the canonical Green's function (a.k.a. ReLU),
which is shown in �gure 1.4.

The regularization term then consists of theM norm of the operator applied to
function. The M(R) space of radon measures, associated with the norm ‖·‖M, is
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de�ned as:

M(R) =
{
f ∈ S ′(R) : ‖f‖M , sup

ρ∈S(R):‖ρ‖∞≤1

〈f, ρ〉 <∞
}

(1.26)

This formula is shown here for the sake of completeness (for more details, see [7]).
For the purposes of this thesis, it su�ces to mention thatM(R) is a slightly larger
space than L1(R), since it also includes the dirac delta function ‖δ(· − xm)‖M = 1,
while δ(· − xm) /∈ L1(R). Moreover, the associated norms have a strong connection
in the sense that functions with a �nite L1 norm have the same M norm, i.e.,
‖f‖L1

= ‖f‖M for any f ∈ L1(R). This property hints that theM norm can also
be used to enforce sparsity, as will become clearer soon.

Now, we are in a position to understand the e�ect of the regularization term
‖L{f}‖M: it promotes sparsity of the function in the range of the L operator.

Take again the example of the TV(2), L = D2; in this case, the regularization term
promotes sparsity of the second-derivative of the function, which will favor piece-
wise linear solutions. Notice that a ReLU (canonical Green's function of D2) is
sparse in this sense, since TV(2){ReLU} = 1, because ‖δ(x)‖M = 1.

Search Space

The continuous domain Representer Theorem in [9] (Thm. 1 ) states that the ex-
treme points of the solution set S of problem (1.24) are a sum of shifted Green's
functions of the operator L, with a bound on K:

f(x) =
K∑
k=1

akρL(x− xk) +

N0∑
n=1

bnpn(x) (1.27)

where ak, xk ∈ R, and {pn}n=1,...,N0 form a basis of NL. The dictionary basis
ρL(· − τ)τ∈R only depends on the operator L and not on the measurements.

Therefore, we can reduce our search space to functions of this form (1.27). This
has the advantage of parameterizing the learning problem, given that these functions
are entirely de�ned by the location of the knots {xk}Kk=1, the Green's functions
coe�cients {ak}Kk=1, and the null space basis coe�cients {bn}Nn=1, with a bound on
K.

To make the task of �nding a solution more practical, two ideas have been pro-
posed. The �rst one, in [8], is the elimination of knot discovery by restricting the
knots of the Green's functions to a grid with spacing h. This makes the problem
computationally more treatable because discovering the knots {xk}Kk=1 is an expen-
sive process. Moreover, as the grid becomes �ner, we are able to represent any
function. With the addition of this (in�nite) grid, (1.27) becomes:

f(x) =
∑
k∈Z

akρL(x− kh) +

N0∑
n=1

bnpn(x) (1.28)

The second contribution, in [9], is the realization that functions of the form
(1.28) have an alternative formulation in terms of a B-spline dictionary basis. Here,
we will focus on the D2 operator (for a general statement, see [9] proposition 1 ).
In fact, (1.28) is a piece-wise linear function, which is also spanned by a B1-spline
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(a) Constructing a B1-spline basis
with ReLUs.

(b) Constructing a ReLU with
B1-splines.

Figure 1.5: B1-splines/ReLU formulation equivalence.

dictionary basis. An intuitive way to see why this is the case is shown in �gure
1.5 - we can represent a ReLU with B1-splines and vice-versa. Notice that a linear
term can also be spanned by a B1-spline dictionary. This alternative formulation in-
creases numerical stability, since small perturbations in the coe�cients lead to small
perturbations in the measurements; in the case of the Green's function formulation,
the system is poorly-conditioned: a perturbation of the coe�cient of a ReLU with
knot at x0 propagates to all measurements at x > x0, and the greater x − x0, the
greater the change in measurements.

With these new basis functions, (1.28) becomes:

f(x) =
∑
k∈Z

ckβ
1(x− kh) (1.29)

Note that this basis is interpolatory, which means that ck = β1(kh). We can derive a
useful relationship between ak and ck; assuming a grid spacing h = 1, for simplicity,
we start from the de�nition of the canonical Green's function for the D2 operator,
ρ(x) = [x]+:

D2ρ = δ
F−→ ρ̂ =

1

ω2
(1.30)

Using now the B1-splines Fourier de�nition [6]:

β̂n(ω) =

(
sin(ω/2)

(ω/2)

)n+1

=
(ejω/2 − e−jω/2)

(jω)n+1

n+1

(1.31)

β̂1(ω) , ∆̂(ω) =
(
ejω − 2 + e−jω

)
· ρ̂ (1.32)

Transforming this expression into time domain, gives the result expressed in �gure
1.5 (a):

∆(x) = [1,−2, 1] ∗ ρ(x). (1.33)
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Replacing this result into the spline expansion above (1.29), we get∑
k∈Z

akρ(x− k) + b0 + b1x =
∑
k∈Z

ck∆(x− k)

⇔
∑
k∈Z

akρ(x− k) =
∑
k∈Z

ck∆(x− k)− b0 − b1x

⇔
∑
k∈Z

akρ(x− k) =
∑
k∈Z

(ck − b0 − b1,k)∆(x− k)

=
∑
k∈Z

dk∆(x− k)

=
∑
k∈Z

dkρ(x− k + 1)− 2
∑
k∈Z

dkρ(x− k) +
∑
k∈Z

dkρ(x− k − 1)

=
∑
k∈Z

dk+1ρ(x− k)− 2
∑
k∈Z

dkρ(x− k) +
∑
k∈Z

dk−1ρ(x− k)

=
∑
k∈Z

(dk+1 − 2dk + dk−1)ρ(x− k). (1.34)

where dk = ck−b0−b1,k. Now notice that ak = dk+1−2dk+dk−1 = ck+1−2ck+ck−1,
because the linear term b0 + b1,k lies in the nullspace of the second-order �nite
di�erence operator. Finally, we get the following relationship between the Green's
function and B1-spline expansion coe�cients:

a = [1,−2, 1] ∗ c (1.35)

where a is the ordered list of ak's and * is the convolution operation. In the general
case, the �lter coe�cients are divided by the grid spacing h.

Exact Discretization

The advantage of this formulation is that it allows us to discretize exactly the prob-
lem (1.24). We continue to focus on L = D2 (recall that

∥∥D2{f}
∥∥
M := TV(2){f}).

Replacing (1.28) into the minimization objective (1.24), given that D2{ρD2} = δ and
‖δ(· − xm)‖M = 1, we get

TV(2){f} =
∑
k∈Z

|ak| = ‖a‖1 =

∥∥∥∥1

h
[1,−2, 1] ∗ c

∥∥∥∥
1

(1.36)

At the end, reducing the search space led to a simple formulation: the TV(2) of
any function in our solution family is simply the `1 norm of its Green's function
coe�cients. This result also makes a direct connection between the M norm and
the `1 norm and makes it clear how the TV(2) leads to sparsity of the Green's function
coe�cients, given the sparsifying e�ect of `1 regularizers. The exact discretization
of the problem, after the search space restriction, becomes:

argmin
c

M∑
m=1

(f(xm, c)− ym)2 + λ

∥∥∥∥1

h
[1,−2, 1] ∗ c

∥∥∥∥
1

(1.37)

f(x, c) =
∑
k∈Z

ckβ
1(x− kh)
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Finite-Dimensional Problem

In practice, we can assume that the signal we are trying to model has a �nite support
[−L,L], so we can have a �nite-dimensional coe�cient vector c whose coe�cients are
within this range. Then, by imposing linear boundary conditions, we can represent
the linear term b0 + b1x and construct an unbounded domain function which is not
penalized by the regularization outside [−L,L]. The formula (1.35) is still valid in
this case. We will discuss this in more detail in section 1.5.

Finally, we have the following �nite-dimensional discrete optimization problem:

arg min
c∈RN

‖Hc− y‖2
2 + λ ‖Lc‖1 (1.38)

This problem can be e�ciently solved through an ADMM-simplex mixed algorithm
[9][8]. More details on this will be provided in the second part of the thesis, where
this algorithm is applied.

To summarize the important ideas of this section: we started from a continuous
formulation in (1.24) for f : R 7→ R; motivated by the continuous domain (1D) Rep-
resenter Theorem, we reduced the search space to the family of functions spanned
by a sum of shifted Green's functions, parameterizing the continuous-domain prob-
lem (1.24). We then restricted the search space by placing the knots of the Green's
functions in a grid (eliminating knot discovery) and equivalently representing the
functions in our model family with a B1-spline expansion. At the end, we were able
to exactly discretize the continuous domain problem, transforming it into a discrete
one of �nding �nitely-many coe�cients c.

This algorithm is elegant, has an interpretable result and is mathematically mo-
tivated, but it only allows learning of functions f : R 7→ R. The rest of the thesis
will explore higher-order methods f : RN 7→ R.

One of the machine learning objects which allows us to go to a higher-order is a
neural network, the object of study of Deep Learning. Since they will be used in the
rest of the thesis, they are brie�y discussed in the next section. Notice that they �t
in the parameteric framework, being therefore more closely linked to the algorithms
we saw in the section 1.2.

1.4 Deep Learning

Deep Learning started gaining traction in 2014, after AlexNet [17] shook the com-
puter vision community by outperforming all the classical computer vision algo-
rithms by a large margin. It is now used for diverse tasks such as inverse problems
in imaging [18], style transfer [19], face generation [20], amongst others. Mathemat-
ically, a neural network, the object of Deep Learning, is a sequence of linear and
non-linear functions [7], i.e., L layers (see �gure 1.6):

f(x) = (σL ◦ fL ◦ σL−1 ◦ · · · ◦ σ2 ◦ f 2 ◦ σ1 ◦ f 1)(x) (1.39)

1. f ` : RN`−1 → RN` (linear)

f ` : x 7→ f `(x) = W `x+ b` (1.40)

with weight matrix W ` = [w1,` · · ·wN`,`] ∈ RN`×N`−1 and bias vector b` =
(b1,` · · · bN`,`) ∈ RN` .
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Figure 1.6: Example of a neural network.

2. σl : RN` → RN` (nonlinear)

σ` : x = (x1, · · · , xN`
) 7→ σ`(x) = (σ1,`(x1), · · · , σN`,`(xN`

)), (1.41)

They can be used to tackle problems of the form:

argmin
θw

M∑
m=1

(f(xm, θw)− ym)2 + µR
(
θw
)

(1.42)

where R
(
θw
)
is any regularization term applied to the parameters θw. One common

type of regularization, called weight decay, is an L2 penalty on the weight parameters
of the network - it is the neural net equivalent of ridge regularization. Neural nets
are parametric models and the regularization is again applied to their parameters,
in contrast to the previous algorithm in which regularization was applied directly to
the function. The MSE loss is given in (1.42) as an example but other losses such
as cross-entropy can be used.

One family of activation functions which has been particularly successful is the
ReLU family [21][22][23]; its most basic form, a ReLU activation, is the function
shown in �gure 1.4. ReLU-based networks have an important link with continuous
piece-wise linear functions (CPWL), which were the focus of the algorithm in the
previous section. Speci�cally, these networks construct CPWL functions [24], and
any CPWL function can be represented by a neural network of this kind [25].

Given the CPWL behaviour of this sucessful family of activation functions, if
our goal is to learn the activations of a neural network, reducing the search space
to piece-wise linear functions seems to be a sensible option. Unser justi�es this
intuition mathematically with a Representer Theorem of deep neural networks [7].
Much like the Representer Theorem alluded to in section 1.3.2, which motivated
reducing the search space to the span of a Green's function basis dictionary, in 1D,
Unser proved a similar result in the context of deep learning, again by using a TV(2)

regularization to promote piece-wise linear solutions [7]. We will brie�y present this
fundamental result (Thm. 3 in [7]), to provide the foundations for the �rst part of
the thesis.

1.5 Deep Splines

Given a neural network with overal composition function as in (1.39), linear weights
U` = [u1,` · · ·uN`,`]

T ∈ RN`×N`−1 which are normalized (‖un,`‖ = 1), nonlinear acti-
vations σ` : RN` → RN` , and which gets as input a series of data points (xm,ym)Mm=1,
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consider the following TV(2)-regularized problem:

arg min
(U`),(σn,`∈BV(2)(R))

( M∑
m=1

E(ym,f(xm)) + µ
N∑
`=1

R`(U `) + λ
L∑
`=1

N∑̀
n=1

TV(2)(σn,`)

)
(1.43)

where E : RNL × RNL → R+ can be any convex loss function, R` : RN`×N` → R+

can be any convex cost on the weights, such as weight decay, and λTV, µ ∈ R+ are
two adjustable regularization parameters. If a solution of (1.43) exists, then one of
the solutions is a "deep spline" network with individual activations of the form

σn,`(x) = b1,n,` + b2,n,`x+

Kn,`∑
k=1

ak,n,`(x− τk,n,`)+, (1.44)

with adaptive parameters Kn,` ≤M − 2, τ1,n,`, · · · , τKn,`,n,` ∈ R, and b1,n,`, b2,n,`,
a1,n,`, · · · , aKn,`,n,` ∈ R.

So, in a similar fashion to section 1.3.2, this theorem states that, if a solution to
(1.43) exists, one of them is of the form (1.44), i.e., a sum of a bounded number K
of ReLUs with uknown slopes and locations, plus a linear term. As we will see in
the experimental section, the strength of the TV(2) regularization can be adjusted
to produce solutions far from the upper bound, i.e., K << M . Again, the linear
term is not penalized by the regularization; however, it can still contribute to the
reduction of the data-�delity part of the loss.

1.5.1 Discretization

Notice that the the activation functions in (1.44) are of the same form as the func-
tions in our reduced search space (1.27), for L = D2, from the gTV method in section
1.3.2. Hence, the same exact discretization applies here:

TV(2){σn,`} =
∥∥∥σ′′n,`∥∥∥M =

Kn,`∑
k=1

|ak,n,`| = ‖an,`‖1 (1.45)

And we reach the following discrete optimization objective, which can be minimized
by training a neural net in a GPU, using batch gradient descent:

arg min
(U`),(σn,`∈BV(2)(R))

( M∑
m=1

E(ym,f(xm)+µ
N∑
`=1

R`(U `)+λ
L∑
`=1

N∑̀
n=1

‖an,`‖1

)
(1.46)
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Chapter 2

Learning Deepsplines

This chapter puts in practice the Representer Theorem of deep neural networks,
which was the focus of the previous section, by learning the activations of a neural
network using deep splines. In the �rst section, we formulate the problem in terms
of B-splines in a �nite-dimensional setting. In the second section, we present the
numerical results.

2.1 B-splines Formulation

From the result of the Representer Theorem (1.44), the same questions as in the
gTV section 1.3.2 are raised.

First, discovering the location of the knots of the ReLUs is slow. To solve this
issue, we can again restrict the knots to a grid (with the grid spacing going to zero
we can still approximate any function in the limit). If the solution is composed of
only a few knots, we hope that the regularization TV(2) will eliminate most of the
non-relevant knots through its sparsifying e�ect (or make negligible). This will be
seen in the experimental validation.

Second, the formulation in terms of ReLUs is poorly-conditioned; in order to
compute the output of the activation we need to know the value at that position
of all ReLUs which have knots before, which makes the cost of backpropagation in-
crease exponentially with the number of knots - the linear increase in a single layer
is exponentially propagated through layers-. This was experimentally veri�ed (but
not shown here). This issue can be circumvented by using the alternative B-splines
formulation, whose details were given in section 1.3.2. With this formulation - with-
out considering the computational cost of the regularization term, which is neglible
for su�ciently large networks - the cost of the backpropagation becomes O(1) with
respect to the number of coe�cients, since we only require the two closest coe�cients
to determine the output value at a given location, through linear interpolation; this
is the advantage of using localized basis functions.

2.1.1 Finite-Dimensional Problem

As mentioned in section 1.3.2, for a practical implementation, we need to transform
this problem into a �nite-dimensional one. If we assume that the large majority
of data points falls within a region of interest [−L,L], we can restrict the B-spline
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Figure 2.1: Finite spline representation;
dashed red: B1-spline basis functions;
dashed gray: boundary basis functions.

coe�cients ck to be in that region. Outside this domain, we can perform linear
extrapolation, so that the function is not penalized by the TV(2) there.

The constructed function is shown in �gure 2.1 with L = 4. Mathematically,
these linear boundary conditions can be done with carefully chosen boundary basis,
shown in dashed gray. In the implementation, we use the �rst two coe�cients
(not shown in 2.1, but corresponding to x = −4 and x = −3) to perform the
left extrapolation, and similarly for the right extrapolation. Note that, in this �nite
representation, the linear term is determined by the left extrapolation and the ReLU
knots are restricted to the region of interest (the �rst and last ReLU knots are at
L + 1 and L − 1, respectively). We can summarize this statement and express the
relationship with the Green's function expansion as follows:

σspline(x) =


∑L

k=−L ck∆(x− k) for x ∈ [−L,L]

c−L + (c−L − c−L+1) · ((−L)− x) for x ∈ (−∞, L)

cL−1 + (cL − cL−1) · (x− (L− 1)) for x ∈ (L,∞)

(2.1)

= b1 + b2x+

(L−1)∑
k=−(L−1)

ak[x− k]+

The relationship between the coe�cients is given by a = Lc (see 1.38), where L is
a (2L− 2)× (2L) Toeplitz matrix and the two degrees of freedom correspond to the
linear term (null space):

a−L+1
...

aL−1

 =


1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 1 −2 1




c−L
c−L+1
...

cL−1

cL

 (2.2)

17



In summary, the regularization term in (1.46) is computed through a valid con-
volution of the B-splines coe�cients c with the discrete D2 �lter and then taking
the ‖·‖1 of the result.

2.2 Numerical Experiments

In this section, we use deep splines in an area classi�cation problem. The aim of these
experiments is to better understand the behaviour of these objects by restricting
ourselves to learning functions which map a two-dimensional real input to a discrete
value. Their performance will be benchmarked against other common activations,
the ReLU and the PReLU.

The task at hand consists of classifying points in a 2D space as being inside or
outside a circle which occupies half the area of the square [−1, 1]2. The underlying
function f : [−1, 1]2 7→ {0, 1} maps a 2D data point to the value 1 if it is inside the
circle, and to the value 0 otherwise:

f(x, y) =

{
1, for x2 + y2 < 2

π

0, otherwise
(2.3)

A training set Si consists ofM (= 1000), position/label pairs: each (x, y) position is
randomly chosen within the square [−1, 1]2 and the corresponding label is assigned
according to (2.3). One training set is shown in �gure 2.2.

To be able to interpret the results, we tackle the problem using a simple archi-
tecture, shown in �gure 2.3a. This network takes a 2D input, which is fed to a single
hidden layer of Nhidden neurons and outputs a real-value. A sigmoid function (�gure
1.3a) is applied to convert this real value into a probability (of the input belonging
to the circle), such that fS(x, y) ∈ [0, 1]. During training, binary-cross entropy is
used to update the network parameters:

LS(fS) =
1

M

M∑
i=1

− log(fS(x, y)) (2.4)

The test set consists of a �ne grid with spacing 0.01 covering the [−1, 1]2 square
(200·200 datapoints). During testing, the output value is quantized into a prediction:

f̂S(x, y) =

{
1, if fS(x, y) > 0.5

0, otherwise
(2.5)

And the test accuracy is computed as:

accuracy (%) =
# correct predictions

# total predictions
× 100 (2.6)

We will benchmark the deep spline against two di�erent activations: the ReLU
and the PReLU. The PReLU, shown in �gure 2.3b, is a piece-wise linear function
with a single knot at zero, like the ReLU, but which has learnable slope a in the
negative part of the domain.
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Figure 2.2: Example of a training dataset S;
red dots: label 0; blue dots: label 1.

(a) Deep spline network architecture;
Nhidden is the number of hidden neurons.

(b) PReLU activation.
(source: [22])

Figure 2.3: deep spline network architecture; PReLU.

An L2 penalty (weight decay) is applied to the weight parameters of the net-
work. The weight decay, µ, is gridsearched with a logarithmic step in the range
[10−10, 10−2].

Five training datasets {S1, . . . , S5} are independently sampled for training. For
each weight decay, one model is trained on each dataset and then the corresponding
test accuracies are computed, including the median accuracy of the �ve models.
The weight decay which achieved the best median accuracy is selected and, for that
weight decay, the test results of the model trained on the median accuracy dataset
are reported.

For the deep spline network, the TV(2) regularization weight (λ) is computed
from the weight decay according to (theoretical work in preparation):

λ =
16

33
µ (2.7)

The Pytorch framework [26] was used for the experiments. The models were
trained for a total of 250 epochs with an Adam optimizer [27], which uses the
gradients in a smarter way than the vanilla-BGD discussed in the introduction; the
initial learning rate was set to 10−3 and was decreased by 10 at epochs 175 and 225.
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A small batch size of 10 was necessary to avoid local minima (by introducing more
stochasticity in the gradients).

In the next two sections, we show the results of the experiments, �rst for the
baseline networks and then for the deep spline. In terms of performance, what we
are concerned about is the relationship between the accuracy and the size of the
network/total number of parameters, so both these quantities are shown alongside
the test accuracies. The color value of the plots represents the network prediction
(probability map).

2.2.1 Baseline Networks

(a) Nhidden = 2,
test accuracy: 74.65%,
N.o parameters: 9.

(b) Nhidden = 10,
test accuracy: 98.15%,
N.o parameters: 41.

Figure 2.4: ReLU; median results for the best weight decay.

(a) Nhidden = 2,
test accuracy: 89.42%,
N.o parameters: 11.

(b) Nhidden = 10,
test accuracy: 98.19%,
N.o parameters: 51.

Figure 2.5: PReLU; median results for the best weight decay.

The results for the baseline networks are shown in �gures 2.4 and 2.5. As we
can observe, with only two hidden neurons, both the ReLU and PReLU networks
do not perform very well (although the PReLU performs much better). To achieve
an accuracy above 98%, we need 10 hidden neurons and a total number of 41/51
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network parameters. Notice that the increased number of parameters in the PReLU
starts to make less of a di�erence as the network size increases.

2.2.2 Deep Spline Network

For the deep spline network, we initialize the activations with an even/odd initial-
ization: half of the activations in the hidden layer are initialized with the absolute
value function and the other half are initialized with the soft-threshold/shrink func-
tion, shown in �gure 2.6, from compressed sensing [28]. This initialization is more
intelectually satisfying than a random one since any function can be represented as
a sum of an even and an odd function and this idea is encountered throughout signal
processing (e.g., Fourier series).

Figure 2.6: Softshrink. 1

As mentioned previously, the TV(2) regularization of the activations promotes
piece-wise linear solutions which have a reduced number of non-zero slopes (few
knots). In practice, negligible slopes are never fully eliminated. As an attempt to
have a tight control on the number of knots, we propose a "sparsi�cation" algorithm.
This algorithm goes from the B-spline expansion coe�cients to the Green's function
expansion coe�cients (c→ a), "kills" the knots with negligible slope (a→ â), and
�nally goes back to B-spline expansion coe�cients again (â→ ĉ). The algorithm is
as follows (assuming grid spacing h = 1, WLOG):

1. a = Lc, as in equation (2.2).

2. Apply threshold: for j ∈ {−L+ 1, . . . , L− 1},

âj =

{
0, if |aj| < atol

aj, otherwise
(2.8)

1https://pytorch.org/docs/master/nn.html
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3. ĉ = g(â):[
ĉ−L
ĉ−L+1

]
=

[
c−L
c−L+1

]
ĉ−L+2

...
ĉL

 =


1 0 · · · · · · 0 0
2 1 · · · · · · 0 0
...

...
...

...
2L− 3 2L− 4 · · · · · · 1 0
2L− 2 2L− 3 · · · · · · 2 1




â−L+1

â−L+2
...

âL−2

âL−1

+

c−L+1
...

c−L+1

 (2.9)

Step 2 of the algorithm eliminates all slopes whose absolute value is smaller than
atol. To choose the absolute threshold we procede as follows: after training the
model, we observe the training accuracy; then, we start from a low atol value and
slowly increase it until the train accuracy drops by more than 1%; �nally, the highest
threshold for which the accuracy drops by less than 1% is chosen.

Step 3 goes back to the B-spline representation, after the elimination of the
negligible slopes. Since the linear term vanishes in the previous transformation,
c−L and c−L+1, which de�ne the linear term, are saved before the last step and are
assigned the same values. The rest of the coe�cients are computed as shown, taking
into account the value of c−L+1.

Here we present the results for deep spline network with just 2 hidden neurons
and 21 B1-spline coe�cients in each activation.

(a) Nhidden = 2,
test accuracy: 98.54%,
N.o parameters: 23

Figure 2.7: deep spline after sparsi�cation, 21 B-spline coe�cients.

The activations and the e�ect of sparsi�cation are shown in �gure 2.8. The dotted
points correspond to knots with a non-zero slope. Note that, before sparsi�cation,
some of the present knots are visibly neglible. Sparsi�cation provides a tighter
control by "killing" these knots. The number of parameters mentioned in �gure 2.7
accounts for the number of non-zero ak slopes after sparsi�cation (12 in total), the
b0, b1 coe�cients which de�ne the linear term for each activation (4 in total), and
the remaining network parameters. Note that one of the activations has the shape

22



6 4 2 0 2 4 6
7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(a) Before sparsi�cation;
the dotted knots have a non-zero slope.

6 4 2 0 2 4 6
7.5

5.0

2.5
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10.0

(b) After sparsi�cation;
the dotted knots have a non-zero slope.

Figure 2.8: Activations of the model corresponding to �gure 2.7.

of a parabola, which makes sense given that the decision boundary is of the form
x2 + y2 − c < 0.

We observe in �gure 2.7 that using a deep spline with only two hidden neurons
and a total of 23 network parameters we were able to achieve a better accuracy than
the ReLU and PReLU networks, with 41 and 51 parameters, respectively. We can
conclude that deep splines allow us to use smaller networks and that the transfer of
capacity from the network weights to the activations is bene�cial.
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Chapter 3

Hessian-Schatten Regularization

3.1 Introduction

The complex implicit parameterization of neural networks leads to a reduced model
interpretability, so alternative higher-order methods based on a stronger mathemat-
ical foundation are worth exploring. In this Part 2 of the thesis, we approach again
the ideas from the gTV B-splines method (section 1.3.2) by presenting a new reg-
ularization framework for learning functions f : R2 7→ R and proposing a method
to solve the continuous domain problem via exact discretization. This framework is
called Hessian-Schatten, because the regularization is based on the Schatten norm
of the Hessian (more on this later).

The problem we which to solve is of the form:

argmin
f

M∑
m=1

(f(xm, ym)− zobsm )2 + λHS(f) (3.1)

Note the change in notation: zobsm is now used for the observations instead of ym
and the input, which was previously denoted as xm, is now explicitly written as
(xm, ym). This emphasizes the 2D nature of the problem. The problem formulation
is non-parametric like in the RKHS and gTV cases.

Before de�ning HS(f), we �rst need to mention the concepts of SVD, Schatten
norm and Hessian matrix, in which it is based; this is the purpose of the �rst three
subsections. The remaining subsections of the introduction will de�ne and discuss
this regularization term and overview the work that has been done on it.

3.1.1 SVD

The SVD is a matrix decomposition of the form A = USV∗ where U and V are
unitary matrices (UU∗ = U∗U = I) and S is diagonal. Every matrix A ∈ Fn×m
has an SVD decomposition [29]. The elements in the diagonal of S are called the
singular values, de�ned as the square roots of the non-negative eigenvalues of AA∗

(the same as ofA∗A). The number of non-zero singular values determines the rank of
the matrix. Note that if A is a normal matrix, i.e., AA∗ = A∗A (e.g., an hermitian
matrix), the spectral theorem applies and A will have an eigen-decomposition of the
form A = UΛU where U is unitary. Then,

√
AA∗ = U |Λ|U∗, which means that

the singular values are equal to the absolute values of the eigenvalues of A.
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3.1.2 Schatten Norm

Given a vector space V over a vector �eld F, a norm is a function p : V 7→ [0,+∞)
which satis�es the following properties for any u,v ∈ V and any scalar a ∈ F:

1. Triangle inequality; p(u+ v) ≤ p(u) + p(v)

2. absolute homogeneity; p(au) = |a| p(u)

3. positive de�niteness; p(u) = 0 i� u = 0.

The Schatten norm is a matrix norm, i.e., it satis�es the conditions above with
V = Fm×n, de�ned as:

‖A‖Sp
= ‖σ‖`p =

(
min(n1,n2)∑

k=1

σpk(A)

) 1
p

(3.2)

From this de�nition, we see that the Schatten norm of a matrix A is computed
by taking its SVD decomposition and then computing the `p norm of the vector
of singular values. Apart from the basic norm properties, the Schatten norm also
satis�es several additional properties, one of which is unitary invariance:

‖UAV‖Sp
= ‖A‖Sp

, for U,V unitary matrices. (3.3)

In this project, we expect to �nd symmetry in the results because of this property.
To better understand the de�nition of the Schatten norm, let us highlight the

equivalence with other well-known norms, for speci�c values of p. The last case,
where p = 1, will be the focus of this part of the project.

p = ∞ :

‖A‖S∞ = σmax(A) = sup{‖Ax‖2 : ‖x‖2 = 1} = ‖A‖2 (3.4)

When p = ∞, the Schatten norm is equal to the operator/spectral norm, i.e., the
maximum singular value. Since U and V are unitary, they only perform "rota-
tions", and S scales the vectors after the V transformation. Hence, we can view the
maximum singular value as the maximum possible "stretch" of a vector after the A
transformation.

p = 2 :

‖A‖S2
=
(min(n1,n2)∑

k=1

σ2
k(A)

) 1
2

=
√
tr(A∗A) =

√√√√ n1∑
i=1

n2∑
j=1

∣∣a2
ij

∣∣ = ‖A‖F (3.5)

When p = 2, the Schatten norm is equal to the Frobenius norm, which is the matrix
norm induced by the inner product 〈A,B〉 = tr(A∗B). The second equality comes
from the fact that tr(X∗X) is equal to the sum of the eigenvalues of X∗X which,
by de�nition, is equal to the sum of the square singular values. This norm arises in
multiple contexts - in the context of neural nets, it is called weight decay.
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p = 1 :

‖A‖S1
=

min(n1,n2)∑
k=1

σk(A) = tr(
√
A∗A) = ‖A‖∗ (3.6)

When p = 1, the Schatten norm is equal to the nuclear/trace norm ‖A‖∗. This norm
is a convex envelope of rank(A), so it is often used in mathematical optimization to
search for low rank matrices. Since the rank of a matrix is the number of non-zero
singular values - a.k.a. the L0 "norm" of the vector of singular values, which is not
convex - it can be relaxed to a convex minimization problem using the L1 norm
instead [30].

As mentioned previously, for normal matrices, the singular values are equal to
the absolute value of the eigenvalues. Hence,

‖A‖S1
=

n∑
k=1

|λk(A)| = ‖λ(A)‖`1 , for A normal (3.7)

So the S1 norm of a normal matrix is equal to the `1 norm of its eigenvalues.

3.1.3 Hessian Operator

The Hessian matrix Hf(x, y) ∈ R2×2 of a twice-di�erentiable function f : R2 7→ R
at (x, y) is the matrix of second partial derivatives:

Hf(x, y) =

[
∂2f
∂x2

(x, y) ∂2f
∂x∂y

(x, y)

∂2f
∂y∂x

(x, y) ∂2f
∂y2

(x, y)

]
(3.8)

Henceforth, we will use the notation H := Hf(x, y) unless it is important specify
the function f or the coordinates (x, y) for which the Hessian is computed.

Schwarz's theorem states that if the second partial derivatives are continuous in
the neighborhood of (x, y), then H is symmetric. However, there might be cases
for which this condition is not satis�ed but H is still symmetric; we will see such
a case in our method. For now, it is important to get a geometric intuition of the
eigen-decomposition of a symmetric Hessian. With that goal in mind, �rst note that
the Hessian is useful in computing second directional derivatives [31]:

∇2
vf = vTHv (3.9)

where v is a unit vector. If the Hessian is symmetric, according to the spectral
theorem, it will have an eigen-decomposition of the form:

H = UΛU∗ (3.10)

where the columns of U are formed by orthonormal eigenvectors (U is unitary).
The eigenvectors of H have an important geometric interpretation: they point in
the direction of minimal and maximal magnitudes of the second derivative. This can
be seen as follows; note that we can write any unit vector as a linear combination
of the eigenvectors, since their combination spans R2:

v = a1v1 + a2v2, a2
1 + a2

2 = 1 (3.11)
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So, the directional derivative in the direction v is:

∇2
vf = (a1v1 + a2v2)TH(a1v1 + a2v2) = (3.12)

= λ1a
2
1 + λ2a

2
2.

where we used the orthogonality of the eigenvectors (vT1 v2 = 0). The last expression
is a convex combination of the eigenvalues so, assuming |λ1| ≤ |λ2| (WLOG), it is
easy to see that:

0 = |λ1| ≤
∣∣∇2

vf
∣∣ ≤ |λ2| (3.13)

where the limits are attained when a1 = 1, a2 = 0 and a1 = 0, a2 = 1, respectively.
From this expression we conclude that the eigenvalues of the Hessian provide the
bounds for the magnitude of the second directional derivatives at (x, y), with the
minimum and largest values being attained in the direction of the eigenvectors.

One �nal point to consider is the following: the Hessian Hf(x, y) of a function
f which is locally linear function at (x, y) is the 0 matrix. This will be important
later.

3.1.4 Hessian-Schatten

We are now in position to de�ne the HS(f) regularization, �rst introduced in [10]:

HS(f) =

∫
(x,y)∈Ω

‖Hf(x, y)‖S1
dxdy =

∫
(x,y)∈Ω

‖σ(x, y)‖`1 dxdy (3.14)

=

∫
(x,y)∈Ω

(
2∑

k=1

σk(x, y)

)
dxdy

where σk(x, y) is the k-th singular value of Hf(x, y). The last equality comes from
the fact that the singular values are non-negative (σk(x, y) = |σk(x, y)|). It is worth
emphasizing the steps required to compute this regularization: we calculate the
Hessian of f at each location (x, y) ∈ Ω; we then take its SVD decomposition and
compute the `1 norm of the vector of singular values; �nally, we integrate over the
whole space Ω to get a single value.

This regularization (and its most general Sp form) enjoys several good properties:
it is scale, rotation and translation-invariant [10]; the rotation invariance is linked
to the unitary invariance of Schatten norms. These properties make the Hessian-
Schatten particularly suitable for natural images, which preserve their structure
under these transformations.

3.1.5 The E�ect of the Regularization

For future reference, let us repeat here the minimization problem we wish to solve:

argmin
f

M∑
m=1

(f(xm, ym)− zobsm )2 + λHS(f) (3.15)

Now that we de�ned the Hessian-Schatten, we can discuss its e�ect. The presence
of the `1 term in (3.14) means that the regularizer will promote solutions with fewer
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non-zero singular values (sparser). For a normal matrix, σk = |λk|, ‖σ(x, y)‖`1 =
‖λ(x, y)‖`1 , so this is equivalent to promoting sparsity in the eigenvalue sense. This
sparsity-promoting behaviour is the reason why we restrict ourselves in this project
to S1 norms, even though a more general version of (3.14) exists [10].

As mentioned before, if the function is locally linear at (x, y), the Hessian there
is identically 0, which is the sparsest result possible (both singular values are zero).
Therefore, this regularization will favor piece-wise linear solutions, by analogy with
the D2 operator in 1D.

3.1.6 Discrete Hessian

Lefkimmiatis et al.[10] addresses the problem above by descretizing the Hessian
matrix using second �nite di�erences, in a context where the underlying function
corresponds to an image (takes discrete indices as input and outputs a real value);
the image intensities on a Nx ×Ny grid are rasterized in a vector zobs ∈ RM (M =
Nx ·Ny). Then, the discrete Hessian operator H : RM 7→ RM×2×2 is applied to the
vectorized image intensities zobs as follows:

[Hzobs]m =

[
[∆r1r1z

obs]m [∆r1r2z
obs]m

[∆r2r1z
obs]m [∆r2r2z

obs]m

]
, m = 1, . . . ,M (3.16)

where ∆rirj are second �nite di�erence operators (see [10] for more details).
Discretizing the Hessian with �nite second di�erences has several disavantages.

First, it naturally leads to discretization errors. Second, it hides the implicit as-
sumption that the underlying function is piece-wise constant (step function), which
is unnatural and not intelectually satisfying. We can argue that images can, in fact,
be seen as step functions in continuous domain, but we have to remember that they
are only samples of a continuous, and usually smooth, underlying signal. More in-
sight and greater �exibility is achieved by modeling this underlying signal instead
(learning over function spaces), without changing the nature of the problem.

In this thesis, we follow an alternative path, analogous to the gTV B-splines
method, where we exactly discretize the problem (3.15) by restricting the search
space to the space spanned by shifts (in a grid) of hexagonal box-splines. This is
the topic of the next section.

3.2 Continuous Formulation

3.2.1 Search Space

To solve the problem (3.15), much in the spirit of the gTV B-splines method, we
reduce the search space to continuous piece-wise linear functions, which are already
favored by the Hessian-Schatten, thus re�ecting the properties of the regulariza-
tion. Note that, in this case, we don't have (yet) a corresponding 2D continuous
Representer Theorem stating that piece-wise linear functions are solutions of the
problem (3.15), as Thm. 1 in [9]. However, this restriction will allow us to �nd a
simple expression for the Hessian-Schatten, while achieving an exact discretization
- transforming the continuous problem into one of �nding �nitely many coe�cients
z.
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Figure 3.1: Antenna frequency reuse pattern.

A convenient way of parameterizing a CPWL function f : Ω 7→ R, Ω ⊂ R2, is by
triangulating the function space. Consider the construction of a 2D lattice, centered
at (0, 0), formed by lattice vectors ν1 and ν2. The lattice is a set Λ of lattice
points (standard coordinates), each corresponding to an index pair in Θ (lattice
coordinates):

Θ :=

{
(i, j) : i, j ∈

{
− P

2
,−P

2
+ 1, . . . ,

P

2
− 1,

P

2

}}
(3.17)

Λ := {iν1 + jν2 : (i, j) ∈ Θ}

where P ∈ N+ is the grid size. We use the following notation for the lattice vertices:

(xi,j, yi,j) = iν1 + jν2 (3.18)

Each lattice point is assigned a value, so we have a a corresponding set f(Λ):

f(Λ) := {f(xi,j, yi,j) : (xi,j, yi,j) ∈ Λ} (3.19)

Since each group of three vertices can de�ne an a�ne subspace, we are able
to parameterize continuous piece-wise linear functions with the pair (Λ, f(Λ)), by
analogy with the 1D case. This will become more evident in the next subsections.

We might now ask what is a good way to tile the space, i.e., choose ν1, ν2.
One solution that is often seen in the literature is hexagonal tiling, based on a
regular hexagonal structure. This tiling is used in several contexts including antenna
frequency reuse patterns (�gure 3.1) and is motivated by the proved Honeycomb
conjecture, which states that an hexagonal grid is the optimal way of dividing a
surface into equal-area regions, having the least total perimeter [32], thus providing
a dense tiling of the space.

To replicate this regular hexagonal structure, we can choose ν1 = 1
h
· (1, 0) and

ν2 = 1
h
· (1

2
,
√

3
2

), leading to a lattice shown in �gure 3.2, with P = 6 and h = 1. As
we will see later, this will allow our CPWL function space to be spanned by shifts
of hexagonal "box-splines". The next section will explain how the pair (Λ, f(Λ)) is
able to parameterize a CPWL function space over Ω.
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(a) Lattice, up view. (b) Lattice, side view.

Figure 3.2: Hexagonal triangulation for P = 6;
the vertex values are randomly initialized.

(a) Barycentric coordinate system. (b) Barycentric coordinates inside
the triangle are all positive.

Figure 3.3: Barycentric coordinates.

3.2.2 Barycentric coordinates

Barycentric coordinates allow computing f(x), for any x ∈ Ω, from the pair (Λ, f(Λ)).
They are used in computer graphics to interpolate data from vertices (vertex shad-
ing); for example, by de�ning a normal for each vertice, which determines how light
is re�ected there, we can compute the normals at other points inside the triangles
by interpolating the corresponding vertex normals, so that we know how light is
re�ected at every location [33].

The barycentric coordinates λ of a point p = (x, y) w.r.t. the triangle with ver-
tices p1, p2, p3 ∈ Λ, which we write as the set {p1, p2, p3}= {(x1, y1), (x2, y2), (x3, y3)},
allow expressing that point as an a�ne combination of the triangle vertices:x1 x2 x3

y1 y2 y3

1 1 1

λ =

xy
1

 (3.20)

The last row constrains this combination to be a�ne, i.e.,
∑

i λi = α + β + γ = 1.
We use the notation λ = Bar(p, {p1, p2, p3}).

The matrix above is invertible i� the three triangle vertices do not fall along a
line (the triangle is not degenerate), so we can get the barycentric coordinates of
(x, y) through:

λ =

αβ
γ

 =

x1 x2 x3

y1 y2 y3

1 1 1

−1

·

xy
1

 (3.21)
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Barycentric coordinates are very useful in checking to which triangle a point belongs
to, since they follow the property shown in �gure 3.3 (a): if all the barycentric coor-
dinates are positive, the point is inside the triangle, otherwise it is outside (or in the
boundary) [33]. This is used in the algorithm for this purpose. After knowing the
triangle to which a point (x, y) belongs to and its corresponding barycentric coor-
dinates, we can compute f(x, y) through interpolation. Suppose the plane equation
of the triangle with vertices (x1, y1), (x2, y2), (x3, y3) ∈ Λ, and corresponding values
f(x1, y1), f(x2, y2), f(x3, y3) ∈ f(Λ), is:

z = f(x, y) = ax+ by + d (3.22)

- to �nd this plane equation we can simply de�ne a linear system with three equations
(one per vertice), zi = axi + byi + d, i ∈ {1, 2, 3}, and solve for a, b, d.- Then, the
value at (x, y) of a point with barycentric coordinates λ = (α, β, γ) is:

f(α(x1, y1) + β(x2, y2) + γ(x3, y3)) = (3.23)

= a(αx1 + βx2 + γx3) + b(αy1 + βy2 + γy3) + (α + β + γ)d = (3.24)

= αf(x1, y1) + βf(x2, y2) + γf(x3, y3) (3.25)

where we used α + β + γ = 1. We conclude that f(x, y) can simply be obtained
through an a�ne combination of the values at the vertices, with the barycentric
coordinates of (x, y) being the weights.

An useful property of barycentric coordinates, that will be used later, is that they
are invariant under a�ne transformations of the point p and the triangle vertices
p1, p2, p3 to which it belongs to, i.e.:

λ = Bar((x, y), {(x1, y1), (x2, y2), (x3, y3)})

= Bar(T(x, y) + a, {T(x1, y1) + a,T(x2, y2) + a,T(x3, y3) + a}) (3.26)

where T ∈ R2×2 and a ∈ R2.

3.2.3 Regularization With the Restricted Search Space

The regularization term in (3.15) can now be further discussed in light of this search
space restriction. As the functions in the restricted search space are locally linear
inside the triangles, there, the Hessian and the regularization cost are zero; this
means that only the junctions between the triangle a�ne subspaces will have a
non-zero Hessian and pay a regularization cost.

As mentioned in subsection 3.1.5, the regularization promotes sparsity of the
eigenvalues of the Hessian matrix (if symmetry is assumed), and the eigenvalues give
bounds to the second directional derivative of the function (∇2

vf) in a v direction
(‖v‖2 = 1), where the minimum and maximum magnitudes are attained in the
direction of the unit norm eigenvectors. Consider �gure 3.4, which shows the three
types of possible plane junctions. It is easy to see that the second derivative in
the direction pointing along the junction of two planes, v1, is always zero (∇2

v1
f =

vT1Hv1 = 0), which is the minimum possible magnitude, so v1 has to correspond
to one of the eigenvectors. Since vT1Hv1 = λ1 ‖v1‖2 = 0, then λ1 = 0, by positive-
de�niteness of the norm. We thus expect to have rank-de�cient Hessian matrices
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along the junctions of the planes. The second eigenvector v2 is perpendicular to
this one; in this direction, the magnitude of the second derivative is maximal. Two
arrows are shown in �gure 3.4 in the direction of each of the eigenvectors v1 and v2.

Since λ1 is always zero, the sparsity-promoting e�ect of the regularization can
only be seen through λ2; if it is positive, then the two contiguous planes form a
convex shape (∇2

v2
f > 0); if it is negative, they form a concave shape; if it zero, then

they lie in the same a�ne subspace, i.e., have the same normal (no "2D knot"). The
latter situation will be promoted by the regularization, since it increases sparsity.

Now we have a clearer geometric understanding of the e�ect of the Hessian-
Schatten regularization. The next section will highlight that our restricted search
space can be spanned by shifts (in the lattice) of symmetric, hexagonal "box-splines",
in analogy to the B-splines in the 1D case.

(a) λ1 = 0, λ2 > 0. (b) λ1 = 0, λ2 < 0. (c) λ1 = 0, λ2 = 0.

Figure 3.4: Possible triangle junctions;
the line segments corresponds to the eigenvectors v1 and v2

3.2.4 Basis function

To solve the problem, we would like to write any model in our restricted search
space as a linear combination of shifted basis functions k:

f(x) =
∑

(i,j)∈Θ

zi,jk(x− xi,j, y − yi,j) (3.27)

=
∑

(i,j)∈Θ

f(xi,j, yi,j)k(x− xi,j, y − yi,j)

Where the set of values f(Λ) = {f(xi,j, yi,j) : (xi,j, yi,j) ∈ Λ} are our parameters.
It is easy to see that our restricted CPWL space (�gure 3.2) can be spanned with

the basis functions k shown in �gure 3.5, called a box-splines; these are symmetric,
�nitely supported, piece-wise linear, and interpolatory, since ki,j is 1 for (x, y) =
(xi,j, yi,j) and 0 for any other vertice point, by analogy with the B1-spline basis.
Note that placing the centers of the shifted basis functions in a 2D lattice eliminates
the need to discover the "2D knots".

In light of this basis function interpretation, it seems natural that we are able to
exactly discretizate of the problem 3.15, and that, with suitable boundary conditions,
we can express that problem as:

arg min
z∈RN

∥∥Hz− zobs∥∥2

2
+ λ ‖Lz‖`1 , N = P · P = Number of lattice vertices

The goal of the next section is to reach this exact discretization.
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Figure 3.5: Box spline basis function.

3.3 Exact Discretization

Ma Mb

Mc

AB

C

Figure 3.6: Lattice scheme, for ν1 = (1, 0) and ν2 = (1
2
,
√

3
2

).

Consider the lattice scheme shown in �gure 3.6, with lattice vectors ν1 = (1, 0),

ν2 = (1
2
,
√

3
2

). Our objective is to write the Hessian-Schatten regularization along
the three junctions shown in red as a function of the vertice values (parameters).
The result for the remaining junctions is written in the same way. Ma, with lattice
coordinates (k, l) ∈ Θ, will be called the reference vertex, and the list of highlighted
vertices (Ma,Mb,Mc, A,B,C), which de�ne the Hessian-Schatten along the three
junctions MbMc, MaMc, MaMb, will be called the neighbors of the reference vertex
Ma.

De�ne also �MaMbAMc
, �MaMbMcB, and �CMbMcMa

, as the open sets formed by
the points inside the parallelograms with vertices (Ma,Mb, A,Mc), (Ma,Mb,Mc, B),
and (C,Mb,Mc,Ma), respectively.

In the appendix, we show the computations of the Hessian operator along the
junctionMbMc, and refrain from doing so for the other junctions because the mathe-
matical reasoning behind it is the same. Here, we will summarize the Hessian results
for this junction and then show the overall Hessian-Schatten results.

Let us start from the following de�nitions of x0y and y0x:

• for y : y ∈ [yMb
, yMc ], de�ne x0y = x : (x− xMb

) = − 1√
3
· (y − yMb

), such that

(x0y, y) represents a point in the line segment MbMc.

• for x : x ∈ [xMa , xMb
], de�ne y0x = y : (y− yMb

) = −
√

3 · (x− xMb
), such that

for x ∈ [xMc , xMb
], (x, y0x) represents a point in the line segment MbMc.
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And de�ne the vector zk,l as the vector formed by the values of the neighboring
vertices of Ma, with lattice coordinates (k, l):

zk,l = (zMa , zMb
, zMc , zA, zB, zC) (3.28)

After the derivation (see appendix), the results we get for the Hessian operator
along the junction MbMc are:

∀(x, y) ∈�MaMbAMc
:

Hf(x, y) = δ(y − y0x) · (a2 −m2) ·
[

3
√

3√
3 1

]
= δ(y − y0x) ·K1 ,

(λ1)K1 = 0, (λ2)K1 = 4 · (a2 −m2) ,

(a2 −m2) = h ·
√

3

3
·
[
1 −1 −1 1 0 0

]
· zk,l

we can see that the matrix is symmetric, even though it does not satisfy the (su�-
cient) Schwartz's theorem condition along the junction. Note that, as expected, the
�rst eigenvalue is zero and the second eigenvalue is a function of the values of the
neighboring vertices of Ma.

3.3.1 The Regularization Operator L

Having computed the Hessian along the junctions of the functions in our restricted
search space, we now present the �nal results (exact discretization) of the Hessian-
Schatten regularization. De�ne:

Ω1 = {(x, y) : (x, y) ∈�MaMbAMc
}, Ω2 = {(x, y) : (x, y) ∈�MaMbMcB}

Ω3 = {(x, y) : (x, y) ∈�CMbMcMa
}, Ωij = Ω1 ∪ Ω2 ∪ Ω3,

HS(f)|Ωij
=

∫
(x,y)∈Ωij

‖Hf(x, y)‖S1
dxdy

=

∫
(x,y)∈Ω1

‖Hf(x, y)‖S1
dxdy +

∫
(x,y)∈Ω2

‖Hf(x, y)‖S1
dxdy +

∫
(x,y)∈Ω3

‖Hf(x, y)‖S1
dxdy

=
2
√

3

3
·
( ∣∣∣ [1 −1 −1 1 0 0

]
· zi,j

∣∣∣+
∣∣∣ [−1 1 −1 0 1 0

]
· zi,j

∣∣∣
+
∣∣∣ [−1 −1 1 0 0 1

]
· zi,j

∣∣∣ )

=

∥∥∥∥∥∥2
√

3

3
·

 1 −1 −1 1 0 0
−1 1 −1 0 1 0
−1 −1 1 0 0 1

 · zi,j
∥∥∥∥∥∥
`1

= ‖L′zij‖`1 (3.29)

To compute the Hessian-Schatten over the whole domain Ω, we simply have to sum
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the results of ‖L′zij‖`1 for all reference points (i, j), where L′ is �xed and zij contains
the values of the neighboring vertices, which for (i, j) = (k, l) are given in 3.28.

HS(f)|Ω =
∑
(i,j)

HS(f)|Ωij
=
∑
(i,j)

‖L′zij‖`1 (3.30)

Equation (3.30) shows an exact discretization of HS(f). Aternatively, we can write
this in a more concise way:

HS(f)|Ω =
∑
(i,j)

‖L′zij‖`1 = ‖Lz‖`1 (3.31)

In order to obtain this concise representation, �rst, we create a rasterized parameter
vector z of size N = P · P , where P is the size of the lattice, containing the values
of the function in all the vertices; second, we construct a matrix L with 3 · N
rows and N columns: we can think of L as a vertical stacking of N submatrices,
each of size 3 × N , with 6 columns corresponding to the columns of L′ and N − 6
additional zero columns; the indices of the non-zero columns correspond to the
indices of the neighbors of a certain vertex, such that the correct neighboring vertices
are "selected" from z. We can conclude that L will be very sparse since, for each
row, at most 4 out of N columns will have nonzero values.

To ensure that the function does not pay a regularization cost outside the lattice
domain, zero boundary conditions are enforced. This can be done by assuming that
the function is zero in the lattice boundary vertices (and outside):

zi,j = 0, if
(
|i| = P

2

)
∨
(
|j| = P

2

)
(3.32)

In practice, we can simply set the columns in L corresponding to these vertices to
zero.

Finally, note how this formula re�ects the properties of the Hessian-Schatten.
First, we can check that (3.31) does not depend on the lattice spacing h. This re�ects
the scale-invariance property of the Hessian-Schatten. Second, we can observe that
the rows of the matrix L′ (3.29) are all very similar and resemble a �nite di�erence
�lter. This re�ects the rotation and translation-invariance of the Hessian-Schatten.
If we look carefully (in conjuction with �gure 3.6), we can see that there is a simple
algorithm, which is the same for all junctions, to compute the Hessian-Schatten in
a given junction; the steps are (take the junction MbMc as an example):

1. take the two triangles forming the junction and the four corresponding vertices
(Ma,Mb, A,Mc);

2. multiply the values of the vertices in the junction (Mb,Mc) by −1 and sum
them;

3. sum the result with the sum of the values of the other two vertices (Ma, A);

4. multiply the result by 2
√

3
3

(due to the geometry of the hexagonal lattice).
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3.3.2 The Forward Operator H

We will now address the exact discretization of the forward operator, after which
the data �delity term will become:

M∑
m=1

(f(xm, ym)− zobsm )2 →
∥∥Hz− zobs∥∥2

2
(3.33)

For this, the key will be barycentric coordinates (subsection 3.2.2). Recall that we
can write any f(x, y) as the convex combination of the values of the vertices to which
(x, y) belongs to:

f(x, y) = αf(x1, y1) + βf(x2, y2) + γf(x3, y3) (3.34)

= αz1 + βz2 + γz3

Let us use the notation (x̂m, ŷm) for the lattice coordinates of a point (xm, ym)
represented in standard coordinates:

(xm, ym) = x̂mν1 + ŷmν2 (3.35)

The lattice coordinates of the vertices are integer pairs, by de�nition.
Our �rst goal is to assign each (xm, ym) to a triangle. Knowing the lattice

coordinates (x̂m, ŷm) of a point already reduces the search to just two triangles;
for example, if the point has lattice coordinates (x̂m, ŷm) = (4.3, 2.5), then it be-
longs to the parallelogram {(4, 2), (5, 2), (5, 3), (4, 3)}, which contains two triangles:
{(4, 2), (5, 2), (4, 3)} and {(5, 2), (5, 3), (4, 3)}. To know exactly which of these is the
correct one, we compute the barycentric coordinates of (xm, ym) with respect to both
triangles and check for which one of them all of the coordinates are non-negative,
as mentioned previously.

For this computation, the a�ne-invariance of barycentric coordinates is use-
ful; the �rst consequence of this property is that we can compute them from the
lattice coordinates of the points, since they are independent of the choice of ν1

and ν2, in which case the vertice positions are represented as index pairs. Sec-
ond, since for large grid sizes P the triangle vertice coordinates might be almost
collinear (e.g. {(232, 234), (233, 234), (234, 233)}), which can lead to numerical is-
sues when inverting the matrix in (3.21), we compute instead the barycentric co-
ordinates of (bx̂mc, bŷmc) with respect to the "origin" triangles {(0, 0), (0, 1), (1, 0)}
and {(0, 1), (1, 1), (1, 0)} (translation-invariance).

Assigning each data point to a triangle and computing the respective barycentric
coordinates is cheap and can be done "o�ine", before solving the minimization
problem.

After this step, we can simply use the previous equation (3.34) to compute
f(xm, ym). This operation can be written concisely as Hz; the matrix H will have
M rows (number of data points) and N = P · P columns (number of vertices).
Each row m of H will have only three non-zero values, the barycentric coordinates,
in the indices corresponding to the vertices of the triangle to which it belongs to.
Therefore, as is the case for the regularization operator L, H is very sparse.

For example, suppose our lattice is composed of only two triangles: {(0, 0), (1, 0), (0, 1)}
and {(1, 0), (1, 1), (0, 1)}; and our training data consists of two data points: (x1, y1) =
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(0.1, 0.1), belonging to the �rst triangle, and which has barycentric coordinates
(α1, β1, γ1), and (x2, y2) = (0.9, 0.9), belonging to the second triangle, and which
has barycentric coordinates (α2, β2, γ2). Then, the discretization of the forward
operator is as follows:

[
f(x1, y1)
f(x2, y2)

]
=

[
α1 β1 0 γ1

0 α2 β2 γ2

]
z0,0

z1,0

z1,1

z0,1

 = Hz (3.36)

Having de�ned the discrete forward and regularization operators, we �nally reach
the exact, �nite-dimensional, discretization of our continuous problem:

arg min
z∈RN

∥∥Hz− zobs∥∥2

2
+ λ ‖Lz‖`1 , N = Number of lattice vertices (3.37)

Note that the problem became of the same form as (1.38), from the B-splines method.
The algorithm used to solve it will be discussed next.

3.4 Algorithm

To solve (3.37), we will use an ADMM-simplex algorithm, based on [8] and [9]. We
will �rst discuss it in the context of the gTV B-splines method.

Theorem 2 in [9] states the solution set SB of the B-spline optimization problem
(1.38) is a compact convex set whose extreme points c∗ are sparse, i.e., ‖Lc∗‖0 ≤M−
N0, whereM is the number of datapoints and N0 is the dimension of the null space of
the operator L. The �rst step of the algorithm uses the alternating direction method
of multipliers (ADMM) to solve (1.38), reaching a solution cADMM. This solution
is not guaranteed to be sparse, i.e., have low ‖LcADMM‖0, since di�erent ADMM
solutions with the same changes in slope (‖LcADMM‖1) can both be minimizers (this
will be made clearer in the experimental part). To circumvent this issue, Lemma
1 states that all solutions in the set SB have the same measurements Hc = yλ.
So, after the ADMM, assuming it converged to a solution, we can compute yλ =
HcADMM and recast the problem (1.38) as:

arg min
c∈RN

‖Lc‖`1 , s.t. Hc = yλ (3.38)

The problem above can be transformed into a linear program (see [9] for more
details). Then, we can use the simplex algorithm to solve it, which is known to
converge to the extreme points of the solution set. By Theorem 2 in [9], the extreme
points are sparse solutions. Note that (3.38) will not lower the value of ‖Lc‖`1
if the ADMM reached an optimal solution to problem (1.38) - by contradiction,
if the simplex �nds a solution csimplex with lower ‖Lc‖`1 , while keeping the same
measurements Hcsimplex = yλ, then this solution achieves a lower loss than cADMM,
hence the ADMM did not reach an optimal solution. However, it might �nd a new
solution which has the same measurements and regularization loss, but is sparser
than cADMM.

In summary, the job of the ADMM is to �nd a solution to the problem and
the job of the simplex is to �nd a (hopefully) sparser solution, which has the same
measurements as the ADMM solution.
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To solve our problem (3.37), we will use the same ADMM-simplex mixed algo-
rithm, since it has the same form as (1.38).

Regarding the implementation: the code is writen in Python (available in 1). The
ADMM uses the odl library 2 while the simplex uses the cvxopt library 3; sparse rep-
resentations are used for the operators L and H (scipy.sparse 4, cvxopt.spmatrix).
The values of the grid vertices z (parameters) are zero-initialized before the algo-
rithm.

In the next chapter we will validate the theoretical �ndings with experiments.

1https://c4science.ch/diffusion/9422/
2https://odlgroup.github.io/odl/
3https://cvxopt.org
4https://docs.scipy.org/doc/scipy/reference/sparse.html

38

https://c4science.ch/diffusion/9422/
https://odlgroup.github.io/odl/
https://cvxopt.org
https://docs.scipy.org/doc/scipy/reference/sparse.html


Chapter 4

Hessian-Schatten Experiments

The �rst section of the experiments deals with a simple problem of learning a pyra-
mid function. Its focus is in accessing the two following points:

1. the solution reached by ADMM is not guaranteed to be sparse (have low
‖LzADMM‖0), since di�erent ADMM solutions with the same changes in slope
‖LzADMM‖`1 can both be minimizers;

2. the simplex reaches sparse solutions zsimplex. Hopefully, we will be able to
reconstruct the pyramid, which is the sparsest solution possible.

In the second section, we will attempt to reconstruct a function with large planes
from a few measurements, and compare the result with ReLU networks. Both our
method and the ReLU networks learn CPWL functions but, in our case, we promote
sparsity with the regularization term.

The following section tackles the problem of data �tting, zobsm = f(xm, ym) + ε.
Here, we will see that the sparse CPWL models that our method constructs are much
better adapted for approximating smooth images. ReLU networks are very good at
learning from high-dimensional signals (complete images), but produce much more
arbitrary results when learning from 2D inputs.

Finally, we will see the advantages of learning over function spaces in a problem
of "2D super-resolution", where we only have access to a downscaled version of an
image and attempt to reconstruct the original image. Again, we will compare our
method with ReLU networks.

4.1 Incomplete Pyramid

In this "incomplete pyramid" experiment, our data consists ofM = 12 samples from
a pyramid function, which are positioned in the lattice vertices; the dataset is shown
in �gure 4.1, together with the zero-initialized lattice of size P = 18 (total of 324
parameters).

We run the algorithm for several di�erent regularization weights λ and numbers
of ADMM iterations. The learned models, after the ADMM and simplex steps, can
be seen in �gures 4.2, 4.3, and 4.4; the colors of the triangles are plotted accord-
ing to their normal vectors, so that sparsity can be visually identi�ed. Table 4.1
summarizes the numerical results: the two "sparsity" columns show the number
(and percentage) of triangle junctions for which |λ2| ≥ ε (recall that λ1 = 0), with
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(a) up view.
(b) side view.

Figure 4.1: Incomplete pyramid dataset (black dots) and the lattice triangulation
with zero-initialized vertices.

(a) ADMM up view. (b) ADMM side view.

(c) Simplex up view. (d) Simplex side view.

Figure 4.2: ADMM-simplex with 50.000 ADMM iterations, λ = 10−1.

ε = 10−5, after the ADMM and simplex steps, respectively (the lower the value, the
sparser the solution). We will now analyse the results, one by one.

Model ADMM sparsity Simplex sparsity
λ = 10−1, 50.000 iter 234 (23.31%) 150 (14.94%)
λ = 10−2, 100.000 iter 234 (23.31%) 132 (13.15%)
λ = 10−2, 50.000 iter 234 (23.31%) 144 (14.34%)

Table 4.1: Incomplete pyramid results.

40



(a) ADMM up view. (b) ADMM side view.

(c) Simplex up view. (d) Simplex up view.

Figure 4.3: ADMM-simplex with 100.000 ADMM iterations, λ = 10−2.

(a) ADMM up view. (b) ADMM side view.

(c) Simplex up view. (d) Simplex up view.

Figure 4.4: ADMM-simplex with 50.000 ADMM iterations, λ = 10−2.
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In the �rst learned model, 4.2, we can see that the ADMM reached a very good
solution. Starting from the lattice grid shown in �gure 4.1, it lead to a reduced num-
ber of facets, with only 23% of the "2D knots" being nonzero (table 4.1). However,
the base of the exterior hexagonal polygon is not sparse, even though no datapoint
is in there - notice the shades of blue color, which indicate that there are di�erent
facets -. The simplex corrects this behaviour, by making only 15% of the junctions
non-zero.

In the second model, 4.3, the ADMM does not present the previous behaviour,
and visually seems to converge to the same solution as the simplex in the previous
example. However, the simplex was able to reach an even sparser solution (very
close to the pyramid), with only 13% of the 2D knots being nonzero.

Finally, in the last example, nothing appears to visually change. However, the
numbers in table 4.1 tell us something di�erent: there were several "almost zero"
junctions in the ADMM solution, where the normals of contiguous triangles are very
close to each other. The simplex e�ectively eliminated these cases, given that the
number of non-zero junctions (144) actually corresponds to what is shown visually.

We conclude by going back to our two initial points. First, the ADMM did not
guarantee sparse solutions. This was especially visible in the last example where the
ADMM solution looked visually the same as the simplex but the simplex had 40%
less 2D knots, which means that the ADMM had several "almost zero" junctions
which it was not able to eliminate. Second, we saw how the simplex reached very
sparse solutions and, even though we didn't get the perfect pyramid, we got very
close to it.

4.2 Incomplete Planes

Figure 4.5: ReLU network architecture.

Model MSE Simplex sparsity
Hessian-Schatten, λ = 10−2 0.0092 23.13%
ReLU network, µ = 10−4 0.0441 NA

Table 4.2: Results for the second planes experiment.

In this section, we wish to compare our algorithm with ReLU networks (which
also produce CPWL functions) in the task of reconstructing a structure with large
planes. Here, we will see the advantages of having a sparsity-promoting framework.
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(a) Large planes data,
up view.

(b) Large planes data, side view.

(c) Large planes data with lattice
triangulation, up view.

(d) Large planes data with lattice
triangulation, side view.

Figure 4.6: Large planes data.

In this experiment, the test set consists of a very �ne sampling of the underlying
function and the training set corresponds to 2% of the test samples, with these
samples being randomly chosen, as shown in �gure 4.6.

For the Hessian-Schatten algorithm, we use a lattice of size P = 50 and run
the ADMM for 50.000 iterations, with a regularization weight λ = 10−2, before
performing the simplex. The ReLU network architecture is shown in �gure 4.5; we
set Nhidden = 100, resulting in a total of 30701 parameters. The network is trained
with a mean-squared-error (MSE) loss, so that the data �delity term is of the same
form as the Hessian-Schatten and set the weight decay to µ = 10−2. The training
is ran for 250 epochs with an Adam optimizer [27] and batch size 64. The inital
learning rate is 10−3 and is decreased by 10 at epochs 175 and 225.

The test MSE and model sparsity are reported in table 4.2 and the visual results
can be seen in �gure 4.7. The �rst row shows the Hessian-Schatten model, after the
simplex, where the colors of the triangles are again plotted according to the normals,
so that sparsity can be assessed. The following two rows show the evaluation of the
model on the test set (black dots), together with the ground truth, �rst for the
Hessian-Schatten (second row) and then for the neural network (third row). For
each method, the plot on the left shows an opaque ground truth, and the plot on
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(a) Hessian-Schatten, up view.
(b) Hessian-Schatten, side view.

(c) Hessian-Schatten, opaque gtruth,
side view.

(d) Hessian-Schatten, translucid gtruth,
side view.

(e) ReLU network, opaque gtruth,
side view.

(f) ReLU network, translucid gtruth,
side view.

Figure 4.7: Large planes reconstruction results.

the right shows a translucid ground truth. Both are shown so that it is clearer to
see that the Hessian-Schatten produces sparser and less "chaotic" solutions.

We can observe that the Hessian-Schatten created a much more smooth (and
sparse) signal than the ReLU network, with only 23.13% of the 2D knots being
nonzero. It also lead to a much lower test MSE (0.0092 vs 0.0441). This experiment
highlights the advantage of a sparsity-promoting regularization in modeling CPWL
functions.

4.3 Data Fitting

In this experiment, we address the problem of data �tting, exempli�ed in �gure 1.1
from the introduction. We assume our dataset consists of noisy observations from
an underlying function f :

zobsm = f(xm, ym) + ε (4.1)
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Figure 4.8: Lenna in lattice.

where ε ∼ N (µ, σ2). Our goal is to model the underlying function f .

We use the classic example of a grayscale, 512 × 512, Lenna image, with pixel
values {zobsi,j }i,j=1,...,512, which are scaled to the range [0, 1]. We assign each (i, j) pixel
in the image to a position (xi,j, yi,j), such that the value of each pixel corresponds
to sampling the function f in a grid, i.e., f(xi,j, yi,j) = zi,j.

The noisy image is created by adding a zero-mean gaussian noise (σ = 0.1) to
the unit-range-scaled original image. The original and noisy images are shown in
�gure 4.9a, 4.9b. The training set corresponds to the noisy image (M = 512 · 512
observations) and the test set to the original image. Our interest in this experiment
is to show how our 2D CPWL parameterization is more �t to model smooth signals
like images than a ReLU network, and that the regularization is well-suited to �ght
over�tting, through its sparsifying e�ect.

In our algorithm, we �t the square image in the lattice as shown in �gure 4.8,
and set P = 820 such that, in the region of the data, there are slightly more
parameters than the number of datapoints. In this case, we should ensure that
the parameters outside of the data region are not taken into account and do not
increase the computational cost of the algorithm. This time, due to the extremely
high number of parameters (P · P = 672.400), which largely exceeds the limits of
linear programming, simplex was not performed. The ADMM algorithm is ran for
50.000 iterations.

The ReLU network is the same as in the previous section; we grid-search the
weight decay (µ) in [1e8, 1e−2] and choose the model which produces the lowest
test MSE.

The results are shown in �gure 4.9. We can observe that the Hessian-Schatten
results are much better then those of the ReLU network. Neural networks perform
well when they have access to the full image as input, thus being able to exploit its
spatial structure. However, taking only a 2D value as input, they perform poorly.
Observe how sparsity increases when we increase the regularization weight: from
19.41% to 14.90%, where the nonzero slopes are those such that |λ2| > 10−4. More-
over, as we increase λ, the images get smoother. The hyper-parameter λ provides
a bias-variance tradeo�; if it is very small, the model will �t the noise and pe-
form poorly; if it is very large, we restrict the model too much, such that it cannot
approximate f su�ciently well.

45



4.4 2D Super-Resolution

Super-resolution is the task of increasing the resolution of an image. Usually, an
input image x ∈ RN×M is given as input to the algorithm and its job is to output
an image of k times greater resolution y ∈ Rk·N×k·M , where k is the expansion
factor. In our case, we learn over function spaces, modeling f : R2 7→ R instead
of taking a discrete x ∈ RN×M input. This continuous domain treatment is in line
with the observation that images are samples of a continuous and usually smooth
signal, which we are trying to model. What we want to show here is that modelling
the continuous signal f provides much greater �exibility since we can then sample
it as �nely as we want, knowing the value f(x, y) for each position (x, y). This
allows us to do super-resolution in a natural way, through learning the model f
on a downscaled version (training data) of an image and then sample more �nely
(depending on k) to get a greater resolution image which can be compared to the
original one (test data).

In these experiments, we again use the Lenna 512× 512 image and downsample
it by a factor of 4 to a size 128× 128. The training data consists of the downscaled
image samples and the test data of the original image. They are shown in �gure
4.10a, 4.10b. The downsampled image was zoomed in to occupy the same space as
the original one.

In the same way as the previous section, we assign each pixel (i, j) in our training
data to a real-valued position (xi,j, yi,j) lying in a grid (see 4.8), and normalize the
pixel values to [0, 1]. For testing, we sample the values in a new grid, occupying the
same space as the training grid, but which is 4 times �ner.

The grid size P = 820 is chosen such that, in the data region, there are roughly
the same number of parameters as pixels in the original image (and 4 times more
parameters than pixels in the subsampled image). The ADMM algorithm was ran
for 50.000 iterations. Again, due to the large number of parameters (820 · 820),
simplex is not performed.

The neural network and the training details are the same as in the previous
section, and the model with the lowest test MSE for the neural network (after grid-
searching µ) is chosen.

The results are shown in �gure 4.10 - here, it is useful to zoom in the pictures,
for better visualization -. Again, the ReLU network performs much worse than the
Hessian-Schatten, since it cannot take well into account the structure of the signal.
For the Hessian-Schatten, we show the results for the λ which gave the lowest test
MSE, after grid-searching λ, as well as for three higher regularization weights. Notice
that, as λ increases, the images get smoother given that the algorithm favors smaller
signal variations, and the number of non-zero junctions is increased: from 19.46%,
15.63% and 13.46% (percentage of junctions with |λ2| > 10−4).

In this experiment, we see the bene�t of learning over function spaces: we have
much more �exibility since we can sample the model as �nely as we want. Of course,
we are restricted by the number of parameters, so the result is naturally less precise
the �ner you sample. Note also that the piece-wise linear assumption is more suited
for images than the implicit piece-wise constant assumption which discretizing the
Hessian, as in [10], entails.
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(a) 512× 512 grayscale Lenna.
(Original)

(b) Lenna + gaussian noise,
SNR = 14.49 dB.

(c) Hessian-Schatten, λ = 10−1,
ADMM sparsity: 19.41%,

PSNR = 32.93 dB.

(d) Neural network, µ = 10−3,
PSNR = 31.45 dB

.

(e) Hessian-Schatten, λ = 2 · 10−1,
ADMM sparsity: 14.90%,

PSNR = 32.82 dB.

Figure 4.9: Data �tting results.
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(a) 512× 512 grayscale Lenna. (b) Downsampled ×4 Lenna.

(c) Neural network, µ = 10−4,
PSNR = 31.09 dB.

(d) Hessian-Schatten, λ = 10−3,
ADMM sparsity: 19.46%,

PSNR = 33.59 dB.

(e) Hessian-Schatten, λ = 5 · 10−3,
ADMM sparsity: 15.63%,

PSNR = 33.47 dB.

(f) Hessian-Schatten, λ = 10−2,
ADMM sparsity: 13.46%,

PSNR = 33.07 dB.

Figure 4.10: 2D Super-resolution results.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize the main conclusions of this thesis and refer to possible
future work.

This project explored higher-order regularization methods whose sparsifying na-
ture allowed us to have parametric solutions to continuous domain problems and
to grid the search space, leading to simpler and more interpretable results. It also
reinforced the use of splines (in particular, B1-splines and box-splines) in connecting
the continuous and discrete worlds of signal processing.

In the �rst part, we discussed deep splines, a method to learn the activations of
a neural network. This method enabled the use of smaller networks to reach the
same level of performance as ReLU-based networks, with a reduced total number of
parameters. This indicates that the transfer of capacity from the network weights
to the activations is advantageous. The visualization of the learned activations also
emerges as a new way of gaining insight into the inner workings of deep spline
networks and possibly infer information about the learning task, as we saw from the
parabola-shaped activation in the area classi�cation problem.

In the second part, we developed a novel learning framework based on the
Hessian-Schatten regularization. Restricting the search space to CPWL functions
with 2D knots on a lattice grid lead to an exact discretization of the continuous
domain problem and a simple expression for the Hessian-Schatten. Moreover, it pro-
vided a box-spline basis intepretation for our model space. Addressing the problem
in its continuous formulation successfully avoided the discretization of the Hessian
operator with second �nite di�erences, which contains an implicit and unmotivated
piece-wise constant assumption about the signal and introduces discretization errors.

A crucial component of this regularization framework is its sparsity-promoting
e�ect, which can be visually interpreted as reducing the number of non-zero junctions
(2D knots) of the CPWL model.

We also presented this method as an alternative to ReLU-based networks in mod-
eling CPWL functions. Neural networks are known to perform well when learning
from high-dimensional signals, but our framework was shown to be better suited for
smooth CPWL 2D functions. In addition, the complex parameterization of neural
networks does not provide a clear understanding of how the parameters a�ect the
overall model function, which our framework does.

In the experimental section, we also highlighted the role of the Hessian-Schatten
regularization in preventing the model from �tting the noise present in image sam-
ples, and showed how learning over function spaces leads to greater �exibility, al-
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lowing us to sample the signal at any location.
Table 5.1 summarizes the methods discussed in this thesis. Neural networks

solve parametric problems and the gTV B-spline and Hessian-Schatten methods
learn over function spaces. In the deep splines case, since regularization is applied
to both the weights of the neural network and its activation functions, it can be
viewed as middle ground between neural networks and the gTV B-splines method.

Problem formulation

gTV B-splines argmin
f
‖f(x)− y‖2

2 + λ ‖L{f}‖M
Hessian-Schatten argmin

f
‖f(x)− y‖2

2 + λHS
(
f
)

Neural Networks argmin
θw
‖f(x,θw)− y‖2

2 + µR
(
θw
)

Deepsplines argmin
θw,σ
‖f(x,θw,σ)− y‖2

2 + µR
(
θw
)

+ λRTV(2)

(
σ
)

Table 5.1: Summary of methods.

In the future, there are several possible research directions which are worth
exploring.

First, we would bene�t from reducing the complexity of the algorithm, whose
bottleneck is the simplex. Reducing the dimensionality of the simplex or �nding an
alternative sparsi�cation method is an important step in expanding the domain of
application of the Hessian-Schatten which, due to its two-dimensional nature, can
quickly reach the limits of linear programming.

Second, we would like to compare the Hessian-Schatten with deep splines, veri-
fying if the deep spline network could better overcome the di�culties faced by the
ReLU-network in learning images in 2D.

Third, we could explore the problem of �nding the knot locations by learning on
an adaptive grid, which relates to the idea of bit-rate allocation for images.

Finally, we can consider using the Hessian-Schatten as a module in a neural
network, replacing the deep splines, by pairing the neurons in a layer so as to have
2D inputs to the activation.
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Chapter 6

Appendix

6.1 Hessian Operator along MbMc

Ma Mb

Mc

AB

C

Figure 6.1: Lattice scheme, for ν1 = (1, 0) and ν2 = (1
2
,
√

3
2

).

Let X ∈ R2×2 be formed by the lattice vectors:

X =

ν1 ν2

 =
1

h
·

[
1 1

2

0
√

3
2

]
(6.1)

where h is the grid spacing. X−1 is given by:

X−1 = h ·

[
1 −

√
3

3

0 2
√

3
3

]
(6.2)

We use the following notations for the plane equations of each of the triangles shown
in 6.1:

(x, y) 7→ m1x+m2y +m3, for (x, y) ∈ ∆MaMbMc (6.3)

(x, y) 7→ a1x+ a2y + a3, for (x, y) ∈ ∆MbAMc

Each ∆ijk is the closed set formed by the points in the triangle with vertices i, j, k.
We start with by de�ning x0y and y0x:

• for y : y ∈ [yMb
, yMc ], de�ne x0y = x : (x− xMb

) = − 1√
3
· (y − yMb

), such that

(x0y, y) represents a point in the line segment MbMc.
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• for x : x ∈ [xMa , xMb
], de�ne y0x = y : (y− yMb

) = −
√

3 · (x− xMb
), such that

for x ∈ [xMc , xMb
], (x, y0x) represents a point in the line segment MbMc.

De�ne also �MaMbAMc
as the open set formed by the the points inside the parallel-

ogram with vertices Ma,Mb, A,Mc. Then, we have:

∀(x,y) ∈�MaMbAMc
,

∂2f(x, y)

∂x2
= (a1 −m1) · δ(x− x0y),

∂2f(x, y)

∂x∂y
= (a2 −m2) · δ(x− x0y),

∂2f(x, y)

∂y∂x
= (a1 −m1) · δ(y − y0x),

∂2f(x, y)

∂y2
= (a2 −m2) · δ(y − y0x).

We can establish a relationship between (a1 −m1) and (a2 −m2), using boundary
conditions in the junction MbMc connecting the planes:

∀ y such that y ∈ [yMb
, yMc ],

m1x0y +m2y +m3 = a1x0y + a2y + a3 ⇐⇒ (a1 −m1)x0y + (a2 −m2)y = a3 −m3{
(a1 −m1)xMb

+ (a2 −m2)yMb
= a3 −m3

(a1 −m1)xMc + (a2 −m2)yMc = a3 −m3

Subtracting the two equations,

(a1 −m1)(xMb
− xMc) + (a2 −m2)(yMb

− yMc) = 0

⇐⇒ (a1 −m1) = (a2 −m2) · (yMc − yMb
)

(xMb
− xMc)

= (a2 −m2) · tan
(π

3

)
= (a2 −m2) ·

√
3

where the value π
3
re�ects the geometry of the regular hexagon. So, the Hessian

∀(x, y) ∈�MaMbAMc
is:

Hf(x, y) = (a2 −m2) ·
[√

3 · δ(x− x0y) δ(x− x0y)√
3 · δ(y − y0x) δ(y − y0x)

]
(6.4)

This matrix does not seem to be symmetric, however, this is actually the case. First
notice that the 1D diracs in the two directions are related:

|y − y0x|
|x− x0y|

= tan
(π

3

)
=
√

3 ⇐⇒ |x− x0y| = |y − y0x| ·
1√
3

Using the following identity:

δ(αx) =
δ(x)

|α|
(6.5)

and the fact that the dirac does not depend on the sign of the argument due to
symmetry (δ(−x) = δ(x)), which also follows from the identity, we get:

δ(x− x0y) =
√

3 · δ(y − y0x) (6.6)
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Finally, we obtain a symmetric matrix, even though the function does not satisfy
the Schwart'z theorem condition (continuity of the second derivative) along MbMc:

∀ (x, y) ∈�MaMbAMc
:

Hf(x, y) = (a2 −m2)

[
3 · δ(y − y0x)

√
3 · δ(y − y0x)√

3 · δ(y − y0x) δ(y − y0x)

]

= δ(y − y0x) · (a2 −m2) ·
[

3
√

3√
3 1

]
= δ(y − y0x) ·K1

where K1 is:

K1 = (a2 −m2) ·
[

3
√

3√
3 1

]
(6.7)

Now, we are ready to compute the eigenvalues of the hessian, λ(Hf(x, y)). The
details are involved and beyond the scope of the thesis (require functional analysis),
but it turns out that:

λ(δ(y − y0x) ·K1) = δ(y − y0x)λ(K1) (6.8)

So, we can simply "take the dirac out" and compute the eigenvalues of the matrix
K1. As we expected, the matrix has rank 1 (if a2 6= m2, otherwise the rank is 0),

thus a zero eigenvalue, since
[

1
2
,−
√

3
2

]
∈ NK1 . Then, the second eigenvalue is equal

to the trace of the matrix:

(λ1)K1 = 0, (λ2)K1 = tr(K1) = (a2 −m2) · 4

Finally, remembering our initial objective (3.27), we want to write (a2 −m2) as
a function of the parameters:

zk,l = (zMa , zMb
, zMc , zA, zB, zC) (6.9)

where zv = f(xv, yv), for v ∈ (Ma,Mb,Mc, A,B,C), and (k, l) are the lattice coor-
dinates of the reference point Ma. For (x, y) ∈ ∆MaMbMc , we have:

(z − zMa) = m1 · (x− xMa) +m2 · (y − yMa),[
zMb
− zMa

zMc − zMa

]
=

[
xMb
− xMa yMb

− yMa

xMc − xMa yMc − yMa

]
·
[
m1

m2

]
= XT ·

[
m1

m2

]

⇐⇒
[
m1

m2

]
= (X−1)T ·

[
zMb
− zMa

zMc − zMa

]
For (x, y) ∈ ∆MbAMc , we have:

(zA − z) = a1 · (xA − x) + a2 · (yA − y),[
zA − zMc

zA − zMb

]
=

[
xA − xMc yA − yMc

xA − xMb
yA − yMb

]
·
[
a1

a2

]
= XT ·

[
a1

a2

]

⇐⇒
[
a1

a2

]
= (X−1)T ·

[
zA − zMc

zA − zMb

]
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(a2 −m2) = ((X−1)T )2,• ·
([

zA − zMc

zA − zMb

]
−
[
zMb
− zMa

zMc − zMa

])

= ((X−1)•,2)T ·
[
1 −1 −1 1
1 −1 −1 1

]
·


zMa

zMb

zMc

zA


= ((X−1)•,2)T ·

[
1
1

]
·
[
1 −1 −1 1 0 0

]
· zk,l

=
(∑

i

(X−1)i,2

)
·
[
1 −1 −1 1 0 0

]
· zk,l

= h ·
√

3

3
·
[
1 −1 −1 1 0 0

]
· zk,l

In summary,

∀(x, y) ∈�MaMbAMc
:

Hf(x, y) = δ(y − y0x) · (a2 −m2) ·
[

3
√

3√
3 1

]
= δ(y − y0x) ·K1 ,

(λ1)K1 = 0, (λ2)K1 = 4 · (a2 −m2) ,

(a2 −m2) = h ·
√

3

3
·
[
1 −1 −1 1 0 0

]
· zk,l.
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